Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (2024) Bytedance Ltd. and/or its affiliates | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# copy and modify from: https://github.com/OpenGVLab/Ask-Anything/blob/main/video_chat2/demo/demo.py | |
import spaces | |
from copy import deepcopy | |
import gradio as gr | |
from gradio.themes.utils import colors, fonts, sizes | |
from tools.conversation import Chat, conv_templates | |
from tools.utils import load_model_and_processor, file_to_base64 | |
from dataset.processor import Processor | |
import os | |
import torch | |
# huggingface-cli login | |
model_path = os.getenv("MODEL_PATH", "omni-research/Tarsier2-7b") | |
max_n_frames = int(os.getenv("MAX_N_FRAMES", 16)) | |
debug = False | |
device = 'cuda' if not debug else 'cpu' | |
# ======================================== | |
# Model Initialization | |
# ======================================== | |
def init_model(): | |
print("Start Initialization...") | |
# if torch.cuda.is_available(): | |
if not debug: | |
model, processor = load_model_and_processor(model_path, max_n_frames) | |
else: | |
print(f"No Valid GPU! Lauch in debug mode!") | |
processor = Processor(model_path, max_n_frames) | |
model = None | |
chat = Chat(model, processor, device, debug) | |
print('Initialization Finished') | |
return chat | |
# ======================================== | |
# Gradio Setting | |
# ======================================== | |
def gradio_reset(chat_state, img_file, img_list): | |
if chat_state is not None: | |
chat_state.messages = [] | |
img_file = None | |
if img_list is not None: | |
img_list = [] | |
return None, gr.update(value=None, interactive=True), gr.update(value=None, interactive=True), gr.update(value=None, interactive=True), gr.update(placeholder='Please upload your video first', interactive=False),gr.update(value="Upload & Start Chat", interactive=True), chat_state, img_file, img_list | |
def upload_img(gr_img, gr_video, gr_gif, chat_state, num_frames): | |
print("video, image or gif:", gr_video, gr_img, gr_gif) | |
conv_type = '' | |
if 'tarsier2-7b' in model_path.lower(): | |
conv_type = 'tarsier2-7b' | |
elif '7b' in model_path.lower(): | |
conv_type = 'tarsier-7b' | |
elif '13b' in model_path.lower(): | |
conv_type = 'tarsier-13b' | |
elif '34b' in model_path.lower(): | |
conv_type = 'tarsier-34b' | |
else: | |
raise ValueError(f"Unknow model: {model_path}") | |
chat_state = deepcopy(conv_templates[conv_type]) | |
img_list = [] | |
if gr_img is None and gr_video is None and gr_gif is None: | |
return None, None, None, gr.update(interactive=True), gr.update(interactive=True, placeholder='Please upload video/image first!'), chat_state, None, None | |
if gr_video or gr_img or gr_gif: | |
for img_file in [gr_video, gr_img, gr_gif]: | |
if img_file is not None: | |
break | |
return gr.update(interactive=True), gr.update(interactive=True), gr.update(interactive=True), gr.update(interactive=True, placeholder='Type and press Enter'), gr.update(value="Start Chatting", interactive=False), chat_state, img_file, img_list | |
def gradio_ask(user_message, chatbot, chat_state): | |
if len(user_message) == 0: | |
return gr.update(interactive=True, placeholder='Input should not be empty!'), chatbot, chat_state | |
chat_state = chat.ask(user_message, chat_state) | |
chatbot = chatbot + [[user_message, None]] | |
return '', chatbot, chat_state | |
def gradio_answer(chatbot, chat_state, img_file, img_list, top_p, temperature, n_frames=None): | |
llm_message, chat_state, img_list = chat.answer(conv=chat_state, visual_data_file=img_file, images=img_list, n_frames=n_frames, max_new_tokens=256, num_beams=1, temperature=temperature, top_p=top_p) | |
chatbot[-1][1] = llm_message | |
print(chat_state) | |
print(f"Answer: {llm_message}") | |
return chatbot, chat_state, img_list | |
class OpenGVLab(gr.themes.base.Base): | |
def __init__( | |
self, | |
*, | |
primary_hue=colors.blue, | |
secondary_hue=colors.sky, | |
neutral_hue=colors.gray, | |
spacing_size=sizes.spacing_md, | |
radius_size=sizes.radius_sm, | |
text_size=sizes.text_md, | |
font=( | |
fonts.GoogleFont("Noto Sans"), | |
"ui-sans-serif", | |
"sans-serif", | |
), | |
font_mono=( | |
fonts.GoogleFont("IBM Plex Mono"), | |
"ui-monospace", | |
"monospace", | |
), | |
): | |
super().__init__( | |
primary_hue=primary_hue, | |
secondary_hue=secondary_hue, | |
neutral_hue=neutral_hue, | |
spacing_size=spacing_size, | |
radius_size=radius_size, | |
text_size=text_size, | |
font=font, | |
font_mono=font_mono, | |
) | |
super().set( | |
body_background_fill="*neutral_50", | |
) | |
gvlabtheme = OpenGVLab(primary_hue=colors.blue, | |
secondary_hue=colors.sky, | |
neutral_hue=colors.gray, | |
spacing_size=sizes.spacing_md, | |
radius_size=sizes.radius_sm, | |
text_size=sizes.text_md, | |
) | |
logo_b64 = file_to_base64("assets/figures/tarsier_logo.jpg") | |
title = f"""<center><a href="https://github.com/bytedance/tarsier"><img src="data:image/jpeg;base64,{logo_b64}" alt="Tarsier" border="0" style="margin: 0 auto; height: 140px;" /></a></center>""" | |
description ="""<center><p><a href='https://github.com/bytedance/tarsier'><img src='https://img.shields.io/badge/Github-Code-blue'></a></p><p></center> | |
""" | |
with gr.Blocks(title="Tarsier",theme=gvlabtheme,css="#chatbot {overflow:auto; height:500px;} #InputVideo {overflow:visible; height:320px;} footer {visibility: none}") as demo: | |
gr.Markdown(title) | |
gr.Markdown(description) | |
with gr.Row(): | |
with gr.Column(scale=0.5, visible=True) as video_upload: | |
with gr.Column(elem_id="image", scale=0.5) as img_part: | |
with gr.Tab("Video", elem_id='video_tab'): | |
up_video = gr.Video(interactive=True, include_audio=True, elem_id="video_upload", height=360) | |
with gr.Tab("Image", elem_id='image_tab'): | |
up_image = gr.Image(type="filepath", interactive=True, elem_id="image_upload", height=360) | |
with gr.Tab("GIF", elem_id='gif_tab'): | |
up_gif = gr.File(type="filepath", file_count="single", file_types=[".gif"], interactive=True, elem_id="gif_upload", height=360) | |
upload_button = gr.Button(value="Upload & Start Chat", interactive=True, variant="primary") | |
clear = gr.Button("Restart") | |
# num_beams = gr.Slider( | |
# minimum=1, | |
# maximum=10, | |
# value=1, | |
# step=1, | |
# interactive=True, | |
# label="beam search numbers)", | |
# ) | |
temperature = gr.Slider( | |
minimum=0.0, | |
maximum=1.0, | |
value=0.0, | |
step=0.1, | |
interactive=True, | |
label="Temperature", | |
) | |
top_p = gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=1.0, | |
step=0.1, | |
interactive=True, | |
label="Top_p", | |
) | |
num_frames = gr.Slider( | |
minimum=4, | |
maximum=16, | |
value=16, | |
step=2, | |
interactive=True, | |
label="#Frames", | |
) | |
with gr.Column(visible=True) as input_raws: | |
chat_state = gr.State() | |
img_list = gr.State() | |
img_file = gr.State() | |
chatbot = gr.Chatbot(elem_id="chatbot",label='VideoChat') | |
with gr.Row(): | |
with gr.Column(scale=0.7): | |
text_input = gr.Textbox(show_label=False, placeholder='Please upload your video first', interactive=False, container=False) | |
with gr.Column(scale=0.15, min_width=0): | |
run = gr.Button("💭Send") | |
with gr.Column(scale=0.15, min_width=0): | |
clear = gr.Button("🔄Clear️") | |
gr.Examples(examples=[ | |
[f"examples/test1.mp4", "Describe the video in detail."], | |
[f"examples/test2.mp4", "Are they having a pleasant conversation?"], | |
], inputs=[up_video, text_input]) | |
chat = init_model() | |
upload_button.click(upload_img, [up_image, up_video, up_gif, chat_state, num_frames], [up_image, up_video, up_gif, text_input, upload_button, chat_state, img_file, img_list]) | |
text_input.submit(gradio_ask, [text_input, chatbot, chat_state], [text_input, chatbot, chat_state]).then( | |
gradio_answer, [chatbot, chat_state, img_file, img_list, top_p, temperature, num_frames], [chatbot, chat_state, img_list] | |
) | |
run.click(gradio_ask, [text_input, chatbot, chat_state], [text_input, chatbot, chat_state]).then( | |
gradio_answer, [chatbot, chat_state, img_file, img_list, top_p, temperature, num_frames], [chatbot, chat_state, img_list] | |
) | |
run.click(lambda: "", None, text_input) | |
clear.click(gradio_reset, [chat_state, img_file, img_list], [chatbot, up_image, up_video, up_gif, text_input, upload_button, chat_state, img_file, img_list], queue=False) | |
demo.launch() | |
# demo.launch(server_name="0.0.0.0", server_port=11451) |