Spaces:
Running
on
Zero
Running
on
Zero
import nltk | |
import einops | |
import torch | |
import torch.nn.functional as F | |
import torchvision.utils | |
from torch_kmeans import KMeans | |
import os | |
import injection_utils | |
import utils | |
class BoundedAttention(injection_utils.AttentionBase): | |
EPSILON = 1e-5 | |
FILTER_TAGS = { | |
'CC', 'CD', 'DT', 'EX', 'IN', 'LS', 'MD', 'PDT', 'POS', 'PRP', 'PRP$', 'RP', 'TO', 'UH', 'WDT', 'WP', 'WRB'} | |
TAG_RULES = {'left': 'IN', 'right': 'IN', 'top': 'IN', 'bottom': 'IN'} | |
def __init__( | |
self, | |
boxes, | |
prompts, | |
cross_loss_layers, | |
self_loss_layers, | |
subject_sub_prompts=None, | |
subject_token_indices=None, | |
cross_mask_layers=None, | |
self_mask_layers=None, | |
eos_token_index=None, | |
filter_token_indices=None, | |
leading_token_indices=None, | |
mask_cross_during_guidance=True, | |
mask_eos=True, | |
cross_loss_coef=1, | |
self_loss_coef=1, | |
max_guidance_iter=15, | |
max_guidance_iter_per_step=5, | |
start_step_size=30, | |
end_step_size=10, | |
loss_stopping_value=0.2, | |
min_clustering_step=15, | |
cross_mask_threshold=0.2, | |
self_mask_threshold=0.2, | |
delta_refine_mask_steps=5, | |
pca_rank=None, | |
num_clusters=None, | |
num_clusters_per_box=3, | |
max_resolution=None, | |
map_dir=None, | |
debug=False, | |
delta_debug_attention_steps=20, | |
delta_debug_mask_steps=5, | |
debug_layers=None, | |
saved_resolution=64, | |
): | |
super().__init__() | |
self.boxes = boxes | |
self.prompts = prompts | |
self.subject_sub_prompts = subject_sub_prompts | |
self.subject_token_indices = subject_token_indices | |
self.cross_loss_layers = set(cross_loss_layers) | |
self.self_loss_layers = set(self_loss_layers) | |
self.cross_mask_layers = self.cross_loss_layers if cross_mask_layers is None else set(cross_mask_layers) | |
self.self_mask_layers = self.self_loss_layers if self_mask_layers is None else set(self_mask_layers) | |
self.eos_token_index = eos_token_index | |
self.filter_token_indices = filter_token_indices | |
self.leading_token_indices = leading_token_indices | |
self.mask_cross_during_guidance = mask_cross_during_guidance | |
self.mask_eos = mask_eos | |
self.cross_loss_coef = cross_loss_coef | |
self.self_loss_coef = self_loss_coef | |
self.max_guidance_iter = max_guidance_iter | |
self.max_guidance_iter_per_step = max_guidance_iter_per_step | |
self.start_step_size = start_step_size | |
self.step_size_coef = (end_step_size - start_step_size) / max_guidance_iter | |
self.loss_stopping_value = loss_stopping_value | |
self.min_clustering_step = min_clustering_step | |
self.cross_mask_threshold = cross_mask_threshold | |
self.self_mask_threshold = self_mask_threshold | |
self.delta_refine_mask_steps = delta_refine_mask_steps | |
self.pca_rank = pca_rank | |
num_clusters = len(boxes) * num_clusters_per_box if num_clusters is None else num_clusters | |
self.clustering = KMeans(n_clusters=num_clusters, num_init=100) | |
self.centers = None | |
self.max_resolution = max_resolution | |
self.map_dir = map_dir | |
self.debug = debug | |
self.delta_debug_attention_steps = delta_debug_attention_steps | |
self.delta_debug_mask_steps = delta_debug_mask_steps | |
self.debug_layers = self.cross_loss_layers | self.self_loss_layers if debug_layers is None else debug_layers | |
self.saved_resolution = saved_resolution | |
self.optimized = False | |
self.cross_foreground_values = [] | |
self.self_foreground_values = [] | |
self.cross_background_values = [] | |
self.self_background_values = [] | |
self.mean_cross_map = 0 | |
self.num_cross_maps = 0 | |
self.mean_self_map = 0 | |
self.num_self_maps = 0 | |
self.self_masks = None | |
def clear_values(self, include_maps=False): | |
lists = ( | |
self.cross_foreground_values, | |
self.self_foreground_values, | |
self.cross_background_values, | |
self.self_background_values, | |
) | |
for values in lists: | |
values.clear() | |
if include_maps: | |
self.mean_cross_map = 0 | |
self.num_cross_maps = 0 | |
self.mean_self_map = 0 | |
self.num_self_maps = 0 | |
def before_step(self): | |
self.clear_values() | |
if self.cur_step == 0: | |
self._determine_tokens() | |
def reset(self): | |
self.clear_values(include_maps=True) | |
super().reset() | |
def forward(self, q, k, v, is_cross, place_in_unet, num_heads, **kwargs): | |
batch_size = q.size(0) // num_heads | |
n = q.size(1) | |
d = k.size(1) | |
dtype = q.dtype | |
device = q.device | |
if is_cross: | |
masks = self._hide_other_subjects_from_tokens(batch_size // 2, n, d, dtype, device) | |
else: | |
masks = self._hide_other_subjects_from_subjects(batch_size // 2, n, dtype, device) | |
resolution = int(n ** 0.5) | |
if (self.max_resolution is not None) and (resolution > self.max_resolution): | |
return super().forward(q, k, v, is_cross, place_in_unet, num_heads, mask=masks) | |
sim = torch.einsum('b i d, b j d -> b i j', q, k) * kwargs['scale'] | |
attn = sim.softmax(-1) | |
self._display_attention_maps(attn, is_cross, num_heads) | |
sim = sim.reshape(batch_size, num_heads, n, d) + masks | |
attn = sim.reshape(-1, n, d).softmax(-1) | |
self._save(attn, is_cross, num_heads) | |
self._display_attention_maps(attn, is_cross, num_heads, prefix='masked') | |
self._debug_hook(q, k, v, sim, attn, is_cross, place_in_unet, num_heads, **kwargs) | |
out = torch.bmm(attn, v) | |
return einops.rearrange(out, '(b h) n d -> b n (h d)', h=num_heads) | |
def update_loss(self, forward_pass, latents, i): | |
if i >= self.max_guidance_iter: | |
return latents | |
step_size = self.start_step_size + self.step_size_coef * i | |
self.optimized = True | |
normalized_loss = torch.tensor(10000) | |
with torch.enable_grad(): | |
latents = latents.clone().detach().requires_grad_(True) | |
for guidance_iter in range(self.max_guidance_iter_per_step): | |
if normalized_loss < self.loss_stopping_value: | |
break | |
latent_model_input = torch.cat([latents] * 2) | |
cur_step = self.cur_step | |
forward_pass(latent_model_input) | |
self.cur_step = cur_step | |
loss, normalized_loss = self._compute_loss() | |
grad_cond = torch.autograd.grad(loss, [latents])[0] | |
latents = latents - step_size * grad_cond | |
if self.debug: | |
print(f'Loss at step={i}, iter={guidance_iter}: {normalized_loss}') | |
grad_norms = grad_cond.flatten(start_dim=2).norm(dim=1) | |
grad_norms = grad_norms / grad_norms.max(dim=1, keepdim=True)[0] | |
self._save_maps(grad_norms, 'grad_norms') | |
self.optimized = False | |
return latents | |
def _tokenize(self, prompt=None): | |
prompt = self.prompts[0] if prompt is None else prompt | |
ids = self.model.tokenizer.encode(prompt) | |
tokens = self.model.tokenizer.convert_ids_to_tokens(ids, skip_special_tokens=True) | |
return [token[:-4] for token in tokens] # remove ending </w> | |
def _tag_tokens(self): | |
tagged_tokens = nltk.pos_tag(self._tokenize()) | |
return [type(self).TAG_RULES.get(token, tag) for token, tag in tagged_tokens] | |
def _determine_subject_tokens(self): | |
if self.subject_token_indices is not None: | |
return | |
if self.subject_sub_prompts is None: | |
raise ValueError('Missing subject sub-prompts.') | |
tokens = self._tokenize() | |
matches = [] | |
self.subject_token_indices = [] | |
for sub_prompt in self.subject_sub_prompts: | |
token_indices = self._determine_specific_subject_tokens(tokens, sub_prompt, matches) | |
matches.append(token_indices[0]) | |
self.subject_token_indices.append(token_indices) | |
def _determine_specific_subject_tokens(self, tokens, sub_prompt, previous_matches): | |
sub_tokens = self._tokenize(sub_prompt) | |
sub_len = len(sub_tokens) | |
matches = [] | |
for i in range(len(tokens)): | |
if tokens[i] == sub_tokens[0] and tokens[i:i + sub_len] == sub_tokens: | |
matches.append(i + 1) | |
if len(matches) == 0: | |
raise ValueError(f'Couldn\'t locate sub-prompt: {sub_prompt}.') | |
new_matches = [i for i in matches if i not in previous_matches] | |
last_match = new_matches[0] if len(new_matches) > 0 else matches[-1] | |
return list(range(last_match, last_match + sub_len)) | |
def _determine_eos_token(self): | |
tokens = self._tokenize() | |
eos_token_index = len(tokens) + 1 | |
if self.eos_token_index is None: | |
self.eos_token_index = eos_token_index | |
elif eos_token_index != self.eos_token_index: | |
raise ValueError(f'Wrong EOS token index. Tokens are: {tokens}.') | |
def _determine_filter_tokens(self): | |
if self.filter_token_indices is not None: | |
return | |
tags = self._tag_tokens() | |
self.filter_token_indices = [i + 1 for i, tag in enumerate(tags) if tag in type(self).FILTER_TAGS] | |
def _determine_leading_tokens(self): | |
if self.leading_token_indices is not None: | |
return | |
tags = self._tag_tokens() | |
leading_token_indices = [] | |
for indices in self.subject_token_indices: | |
subject_noun_indices = [i for i in indices if tags[i - 1].startswith('NN')] | |
leading_token_candidates = subject_noun_indices if len(subject_noun_indices) > 0 else indices | |
leading_token_indices.append(leading_token_candidates[-1]) | |
self.leading_token_indices = leading_token_indices | |
def _determine_tokens(self): | |
self._determine_subject_tokens() | |
self._determine_eos_token() | |
self._determine_filter_tokens() | |
self._determine_leading_tokens() | |
def _split_references(self, tensor, num_heads): | |
tensor = tensor.reshape(-1, num_heads, *tensor.shape[1:]) | |
unconditional, conditional = tensor.chunk(2) | |
num_subjects = len(self.boxes) | |
batch_unconditional = unconditional[:-num_subjects] | |
references_unconditional = unconditional[-num_subjects:] | |
batch_conditional = conditional[:-num_subjects] | |
references_conditional = conditional[-num_subjects:] | |
batch = torch.cat((batch_unconditional, batch_conditional)) | |
references = torch.cat((references_unconditional, references_conditional)) | |
batch = batch.reshape(-1, *batch_unconditional.shape[2:]) | |
references = references.reshape(-1, *references_unconditional.shape[2:]) | |
return batch, references | |
def _hide_other_subjects_from_tokens(self, batch_size, n, d, dtype, device): # b h i j | |
resolution = int(n ** 0.5) | |
subject_masks, background_masks = self._obtain_masks(resolution, batch_size=batch_size, device=device) # b s n | |
include_background = self.optimized or (not self.mask_cross_during_guidance and self.cur_step < self.max_guidance_iter_per_step) | |
subject_masks = torch.logical_or(subject_masks, background_masks.unsqueeze(1)) if include_background else subject_masks | |
min_value = torch.finfo(dtype).min | |
sim_masks = torch.zeros((batch_size, n, d), dtype=dtype, device=device) # b i j | |
for token_indices in (*self.subject_token_indices, self.filter_token_indices): | |
sim_masks[:, :, token_indices] = min_value | |
for batch_index in range(batch_size): | |
for subject_mask, token_indices in zip(subject_masks[batch_index], self.subject_token_indices): | |
for token_index in token_indices: | |
sim_masks[batch_index, subject_mask, token_index] = 0 | |
if self.mask_eos and not include_background: | |
for batch_index, background_mask in zip(range(batch_size), background_masks): | |
sim_masks[batch_index, background_mask, self.eos_token_index] = min_value | |
return torch.cat((torch.zeros_like(sim_masks), sim_masks)).unsqueeze(1) | |
def _hide_other_subjects_from_subjects(self, batch_size, n, dtype, device): # b h i j | |
resolution = int(n ** 0.5) | |
subject_masks, background_masks = self._obtain_masks(resolution, batch_size=batch_size, device=device) # b s n | |
min_value = torch.finfo(dtype).min | |
sim_masks = torch.zeros((batch_size, n, n), dtype=dtype, device=device) # b i j | |
for batch_index, background_mask in zip(range(batch_size), background_masks): | |
sim_masks[batch_index, ~background_mask, ~background_mask] = min_value | |
for batch_index in range(batch_size): | |
for subject_mask in subject_masks[batch_index]: | |
subject_sim_mask = sim_masks[batch_index, subject_mask] | |
condition = torch.logical_or(subject_sim_mask == 0, subject_mask.unsqueeze(0)) | |
sim_masks[batch_index, subject_mask] = torch.where(condition, 0, min_value).to(dtype=dtype) | |
return torch.cat((sim_masks, sim_masks)).unsqueeze(1) | |
def _save(self, attn, is_cross, num_heads): | |
_, attn = attn.chunk(2) | |
attn = attn.reshape(-1, num_heads, *attn.shape[-2:]) # b h n k | |
self._save_mask_maps(attn, is_cross) | |
self._save_loss_values(attn, is_cross) | |
def _save_mask_maps(self, attn, is_cross): | |
if ( | |
(self.optimized) or | |
(is_cross and self.cur_att_layer not in self.cross_mask_layers) or | |
((not is_cross) and (self.cur_att_layer not in self.self_mask_layers)) | |
): | |
return | |
if is_cross: | |
attn = attn[..., self.leading_token_indices] | |
mean_map = self.mean_cross_map | |
num_maps = self.num_cross_maps | |
else: | |
mean_map = self.mean_self_map | |
num_maps = self.num_self_maps | |
num_maps += 1 | |
attn = attn.mean(dim=1) # mean over heads | |
mean_map = ((num_maps - 1) / num_maps) * mean_map + (1 / num_maps) * attn | |
if is_cross: | |
self.mean_cross_map = mean_map | |
self.num_cross_maps = num_maps | |
else: | |
self.mean_self_map = mean_map | |
self.num_self_maps = num_maps | |
def _save_loss_values(self, attn, is_cross): | |
if ( | |
(not self.optimized) or | |
(is_cross and (self.cur_att_layer not in self.cross_loss_layers)) or | |
((not is_cross) and (self.cur_att_layer not in self.self_loss_layers)) | |
): | |
return | |
resolution = int(attn.size(2) ** 0.5) | |
boxes = self._convert_boxes_to_masks(resolution, device=attn.device) # s n | |
background_mask = boxes.sum(dim=0) == 0 | |
if is_cross: | |
saved_foreground_values = self.cross_foreground_values | |
saved_background_values = self.cross_background_values | |
contexts = [indices + [self.eos_token_index] for indices in self.subject_token_indices] # TODO: fix EOS loss term | |
else: | |
saved_foreground_values = self.self_foreground_values | |
saved_background_values = self.self_background_values | |
contexts = boxes | |
foreground_values = [] | |
background_values = [] | |
for i, (box, context) in enumerate(zip(boxes, contexts)): | |
context_attn = attn[:, :, :, context] | |
# sum over heads, pixels and contexts | |
foreground_values.append(context_attn[:, :, box].sum(dim=(1, 2, 3))) | |
background_values.append(context_attn[:, :, background_mask].sum(dim=(1, 2, 3))) | |
saved_foreground_values.append(torch.stack(foreground_values, dim=1)) | |
saved_background_values.append(torch.stack(background_values, dim=1)) | |
def _compute_loss(self): | |
cross_losses = self._compute_loss_term(self.cross_foreground_values, self.cross_background_values) | |
self_losses = self._compute_loss_term(self.self_foreground_values, self.self_background_values) | |
b, s = cross_losses.shape | |
# sum over samples and subjects | |
total_cross_loss = cross_losses.sum() | |
total_self_loss = self_losses.sum() | |
loss = self.cross_loss_coef * total_cross_loss + self.self_loss_coef * total_self_loss | |
normalized_loss = loss / b / s | |
return loss, normalized_loss | |
def _compute_loss_term(self, foreground_values, background_values): | |
# mean over layers | |
mean_foreground = torch.stack(foreground_values).mean(dim=0) | |
mean_background = torch.stack(background_values).mean(dim=0) | |
iou = mean_foreground / (mean_foreground + len(self.boxes) * mean_background) | |
return (1 - iou) ** 2 | |
def _obtain_masks(self, resolution, return_boxes=False, return_existing=False, batch_size=None, device=None): | |
return_boxes = return_boxes or (return_existing and self.self_masks is None) | |
if return_boxes or self.cur_step < self.min_clustering_step: | |
masks = self._convert_boxes_to_masks(resolution, device=device).unsqueeze(0) | |
if batch_size is not None: | |
masks = masks.expand(batch_size, *masks.shape[1:]) | |
else: | |
masks = self._obtain_self_masks(resolution, return_existing=return_existing) | |
if device is not None: | |
masks = masks.to(device=device) | |
background_mask = masks.sum(dim=1) == 0 | |
return masks, background_mask | |
def _convert_boxes_to_masks(self, resolution, device=None): # s n | |
boxes = torch.zeros(len(self.boxes), resolution, resolution, dtype=bool, device=device) | |
for i, box in enumerate(self.boxes): | |
x0, x1 = box[0] * resolution, box[2] * resolution | |
y0, y1 = box[1] * resolution, box[3] * resolution | |
boxes[i, round(y0) : round(y1), round(x0) : round(x1)] = True | |
return boxes.flatten(start_dim=1) | |
def _obtain_self_masks(self, resolution, return_existing=False): | |
if ( | |
(self.self_masks is None) or | |
( | |
(self.cur_step % self.delta_refine_mask_steps == 0) and | |
(self.cur_att_layer == 0) and | |
(not return_existing) | |
) | |
): | |
self.self_masks = self._fix_zero_masks(self._build_self_masks()) | |
b, s, n = self.self_masks.shape | |
mask_resolution = int(n ** 0.5) | |
self_masks = self.self_masks.reshape(b, s, mask_resolution, mask_resolution).float() | |
self_masks = F.interpolate(self_masks, resolution, mode='nearest-exact') | |
return self_masks.flatten(start_dim=2).bool() | |
def _build_self_masks(self): | |
c, clusters = self._cluster_self_maps() # b n | |
cluster_masks = torch.stack([(clusters == cluster_index) for cluster_index in range(c)], dim=2) # b n c | |
cluster_area = cluster_masks.sum(dim=1, keepdim=True) # b 1 c | |
n = clusters.size(1) | |
resolution = int(n ** 0.5) | |
cross_masks = self._obtain_cross_masks(resolution) # b s n | |
cross_mask_area = cross_masks.sum(dim=2, keepdim=True) # b s 1 | |
intersection = torch.bmm(cross_masks.float(), cluster_masks.float()) # b s c | |
min_area = torch.minimum(cross_mask_area, cluster_area) # b s c | |
score_per_cluster, subject_per_cluster = torch.max(intersection / min_area, dim=1) # b c | |
subjects = torch.gather(subject_per_cluster, 1, clusters) # b n | |
scores = torch.gather(score_per_cluster, 1, clusters) # b n | |
s = cross_masks.size(1) | |
self_masks = torch.stack([(subjects == subject_index) for subject_index in range(s)], dim=1) # b s n | |
scores = scores.unsqueeze(1).expand(-1 ,s, n) # b s n | |
self_masks[scores < self.self_mask_threshold] = False | |
self._save_maps(self_masks, 'self_masks') | |
return self_masks | |
def _cluster_self_maps(self): # b s n | |
self_maps = self._compute_maps(self.mean_self_map) # b n m | |
if self.pca_rank is not None: | |
dtype = self_maps.dtype | |
_, _, eigen_vectors = torch.pca_lowrank(self_maps.float(), self.pca_rank) | |
self_maps = torch.matmul(self_maps, eigen_vectors.to(dtype=dtype)) | |
clustering_results = self.clustering(self_maps, centers=self.centers) | |
self.clustering.num_init = 1 # clustering is deterministic after the first time | |
self.centers = clustering_results.centers | |
clusters = clustering_results.labels | |
num_clusters = self.clustering.n_clusters | |
self._save_maps(clusters / num_clusters, f'clusters') | |
return num_clusters, clusters | |
def _obtain_cross_masks(self, resolution, scale=10): | |
maps = self._compute_maps(self.mean_cross_map, resolution=resolution) # b n k | |
maps = F.sigmoid(scale * (maps - self.cross_mask_threshold)) | |
maps = self._normalize_maps(maps, reduce_min=True) | |
maps = maps.transpose(1, 2) # b k n | |
existing_masks, _ = self._obtain_masks( | |
resolution, return_existing=True, batch_size=maps.size(0), device=maps.device) | |
maps = maps * existing_masks.to(dtype=maps.dtype) | |
self._save_maps(maps, 'cross_masks') | |
return maps | |
def _fix_zero_masks(self, masks): | |
b, s, n = masks.shape | |
resolution = int(n ** 0.5) | |
boxes = self._convert_boxes_to_masks(resolution, device=masks.device) # s n | |
for i in range(b): | |
for j in range(s): | |
if masks[i, j].sum() == 0: | |
print('******Found a zero mask!******') | |
for k in range(s): | |
masks[i, k] = boxes[j] if (k == j) else masks[i, k].logical_and(~boxes[j]) | |
return masks | |
def _compute_maps(self, maps, resolution=None): # b n k | |
if resolution is not None: | |
b, n, k = maps.shape | |
original_resolution = int(n ** 0.5) | |
maps = maps.transpose(1, 2).reshape(b, k, original_resolution, original_resolution) | |
maps = F.interpolate(maps, resolution, mode='bilinear', antialias=True) | |
maps = maps.reshape(b, k, -1).transpose(1, 2) | |
maps = self._normalize_maps(maps) | |
return maps | |
def _normalize_maps(cls, maps, reduce_min=False): # b n k | |
max_values = maps.max(dim=1, keepdim=True)[0] | |
min_values = maps.min(dim=1, keepdim=True)[0] if reduce_min else 0 | |
numerator = maps - min_values | |
denominator = max_values - min_values + cls.EPSILON | |
return numerator / denominator | |
def _save_maps(self, maps, prefix): | |
if self.map_dir is None or self.cur_step % self.delta_debug_mask_steps != 0: | |
return | |
resolution = int(maps.size(-1) ** 0.5) | |
maps = maps.reshape(-1, 1, resolution, resolution).float() | |
maps = F.interpolate(maps, self.saved_resolution, mode='bilinear', antialias=True) | |
path = os.path.join(self.map_dir, f'map_{prefix}_{self.cur_step}_{self.cur_att_layer}.png') | |
torchvision.utils.save_image(maps, path) | |
def _display_attention_maps(self, attention_maps, is_cross, num_heads, prefix=None): | |
if (not self.debug) or (self.cur_step == 0) or (self.cur_step % self.delta_debug_attention_steps > 0) or (self.cur_att_layer not in self.debug_layers): | |
return | |
dir_name = self.map_dir | |
if prefix is not None: | |
splits = list(os.path.split(dir_name)) | |
splits[-1] = '_'.join((prefix, splits[-1])) | |
dir_name = os.path.join(*splits) | |
resolution = int(attention_maps.size(-2) ** 0.5) | |
if is_cross: | |
attention_maps = einops.rearrange(attention_maps, 'b (r1 r2) k -> b k r1 r2', r1=resolution) | |
attention_maps = F.interpolate(attention_maps, self.saved_resolution, mode='bilinear', antialias=True) | |
attention_maps = einops.rearrange(attention_maps, 'b k r1 r2 -> b (r1 r2) k') | |
utils.display_attention_maps( | |
attention_maps, | |
is_cross, | |
num_heads, | |
self.model.tokenizer, | |
self.prompts, | |
dir_name, | |
self.cur_step, | |
self.cur_att_layer, | |
resolution, | |
) | |
def _debug_hook(self, q, k, v, sim, attn, is_cross, place_in_unet, num_heads, **kwargs): | |
pass | |