Spaces:
Running
on
Zero
Running
on
Zero
import os | |
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1" | |
import sys | |
sys.path.insert(0, './diffusers/src') | |
import cv2 | |
import numpy as np | |
import PIL | |
import torch | |
from controlnet_aux import ZoeDetector | |
from diffusers import DPMSolverMultistepScheduler | |
from diffusers.image_processor import IPAdapterMaskProcessor | |
from diffusers.models import ControlNetModel | |
from huggingface_hub import snapshot_download | |
from insightface.app import FaceAnalysis | |
from pipeline import OmniZeroPipeline | |
from transformers import CLIPVisionModelWithProjection | |
from utils import align_images, draw_kps, load_and_resize_image | |
import random | |
class OmniZeroSingle(): | |
def __init__(self, | |
base_model="stabilityai/stable-diffusion-xl-base-1.0", | |
device="cuda", | |
): | |
snapshot_download("okaris/antelopev2", local_dir="./models/antelopev2") | |
self.face_analysis = FaceAnalysis(name='antelopev2', root='./', providers=['CUDAExecutionProvider', 'CPUExecutionProvider']) | |
self.face_analysis.prepare(ctx_id=0, det_size=(640, 640)) | |
dtype = torch.float16 | |
ip_adapter_plus_image_encoder = CLIPVisionModelWithProjection.from_pretrained( | |
"h94/IP-Adapter", | |
subfolder="models/image_encoder", | |
torch_dtype=dtype, | |
).to(device) | |
zoedepthnet_path = "okaris/zoe-depth-controlnet-xl" | |
zoedepthnet = ControlNetModel.from_pretrained(zoedepthnet_path,torch_dtype=dtype).to(device) | |
identitiynet_path = "okaris/face-controlnet-xl" | |
identitynet = ControlNetModel.from_pretrained(identitiynet_path, torch_dtype=dtype).to(device) | |
self.zoe_depth_detector = ZoeDetector.from_pretrained("lllyasviel/Annotators").to(device) | |
self.pipeline = OmniZeroPipeline.from_pretrained( | |
base_model, | |
controlnet=[identitynet, zoedepthnet], | |
torch_dtype=dtype, | |
image_encoder=ip_adapter_plus_image_encoder, | |
).to(device) | |
config = self.pipeline.scheduler.config | |
config["timestep_spacing"] = "trailing" | |
self.pipeline.scheduler = DPMSolverMultistepScheduler.from_config(config, use_karras_sigmas=True, algorithm_type="sde-dpmsolver++", final_sigmas_type="zero") | |
self.pipeline.load_ip_adapter(["okaris/ip-adapter-instantid", "h94/IP-Adapter", "h94/IP-Adapter"], subfolder=[None, "sdxl_models", "sdxl_models"], weight_name=["ip-adapter-instantid.bin", "ip-adapter-plus_sdxl_vit-h.safetensors", "ip-adapter-plus_sdxl_vit-h.safetensors"]) | |
def get_largest_face_embedding_and_kps(self, image, target_image=None): | |
face_info = self.face_analysis.get(cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)) | |
if len(face_info) == 0: | |
return None, None | |
largest_face = sorted(face_info, key=lambda x: x['bbox'][2] * x['bbox'][3], reverse=True)[0] | |
face_embedding = torch.tensor(largest_face['embedding']).to("cuda") | |
if target_image is None: | |
target_image = image | |
zeros = np.zeros((target_image.size[1], target_image.size[0], 3), dtype=np.uint8) | |
face_kps_image = draw_kps(zeros, largest_face['kps']) | |
return face_embedding, face_kps_image | |
def generate(self, | |
seed=42, | |
prompt="A person", | |
negative_prompt="blurry, out of focus", | |
guidance_scale=3.0, | |
number_of_images=1, | |
number_of_steps=10, | |
base_image=None, | |
base_image_strength=0.15, | |
composition_image=None, | |
composition_image_strength=1.0, | |
style_image=None, | |
style_image_strength=1.0, | |
identity_image=None, | |
identity_image_strength=1.0, | |
depth_image=None, | |
depth_image_strength=0.5, | |
): | |
resolution = 1024 | |
if base_image is not None: | |
base_image = load_and_resize_image(base_image, resolution, resolution) | |
else: | |
if composition_image is not None: | |
base_image = load_and_resize_image(composition_image, resolution, resolution) | |
else: | |
raise ValueError("You must provide a base image or a composition image") | |
if depth_image is None: | |
depth_image = self.zoe_depth_detector(base_image, detect_resolution=resolution, image_resolution=resolution) | |
else: | |
depth_image = load_and_resize_image(depth_image, resolution, resolution) | |
base_image, depth_image = align_images(base_image, depth_image) | |
if composition_image is not None: | |
composition_image = load_and_resize_image(composition_image, resolution, resolution) | |
else: | |
composition_image = base_image | |
if style_image is not None: | |
style_image = load_and_resize_image(style_image, resolution, resolution) | |
else: | |
raise ValueError("You must provide a style image") | |
if identity_image is not None: | |
identity_image = load_and_resize_image(identity_image, resolution, resolution) | |
else: | |
raise ValueError("You must provide an identity image") | |
face_embedding_identity_image, target_kps = self.get_largest_face_embedding_and_kps(identity_image, base_image) | |
if face_embedding_identity_image is None: | |
raise ValueError("No face found in the identity image, the image might be cropped too tightly or the face is too small") | |
face_embedding_base_image, face_kps_base_image = self.get_largest_face_embedding_and_kps(base_image) | |
if face_embedding_base_image is not None: | |
target_kps = face_kps_base_image | |
self.pipeline.set_ip_adapter_scale([identity_image_strength, | |
{ | |
"down": { "block_2": [0.0, 0.0] }, | |
"up": { "block_0": [0.0, style_image_strength, 0.0] } | |
}, | |
{ | |
"down": { "block_2": [0.0, composition_image_strength] }, | |
"up": { "block_0": [0.0, 0.0, 0.0] } | |
} | |
]) | |
generator = torch.Generator(device="cpu").manual_seed(seed) | |
images = self.pipeline( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
guidance_scale=guidance_scale, | |
ip_adapter_image=[face_embedding_identity_image, style_image, composition_image], | |
image=base_image, | |
control_image=[target_kps, depth_image], | |
controlnet_conditioning_scale=[identity_image_strength, depth_image_strength], | |
identity_control_indices=[(0,0)], | |
num_inference_steps=number_of_steps, | |
num_images_per_prompt=number_of_images, | |
strength=(1-base_image_strength), | |
generator=generator, | |
seed=seed, | |
).images | |
return images | |
class OmniZeroCouple(): | |
def __init__(self, | |
base_model="stabilityai/stable-diffusion-xl-base-1.0", | |
device="cuda", | |
): | |
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1" | |
self.patch_onnx_runtime() | |
snapshot_download("okaris/antelopev2", local_dir="./models/antelopev2") | |
self.face_analysis = FaceAnalysis(name='antelopev2', root='./', providers=['CUDAExecutionProvider', 'CPUExecutionProvider']) | |
self.face_analysis.prepare(ctx_id=0, det_size=(640, 640)) | |
self.dtype = dtype = torch.float16 | |
ip_adapter_plus_image_encoder = CLIPVisionModelWithProjection.from_pretrained( | |
"h94/IP-Adapter", | |
subfolder="models/image_encoder", | |
torch_dtype=dtype, | |
).to(device) | |
zoedepthnet_path = "okaris/zoe-depth-controlnet-xl" | |
zoedepthnet = ControlNetModel.from_pretrained(zoedepthnet_path,torch_dtype=dtype).to(device) | |
identitiynet_path = "okaris/face-controlnet-xl" | |
identitynet = ControlNetModel.from_pretrained(identitiynet_path, torch_dtype=dtype).to(device) | |
self.zoe_depth_detector = ZoeDetector.from_pretrained("lllyasviel/Annotators").to(device) | |
self.ip_adapter_mask_processor = IPAdapterMaskProcessor() | |
self.pipeline = OmniZeroPipeline.from_pretrained( | |
base_model, | |
controlnet=[identitynet, identitynet, zoedepthnet], | |
torch_dtype=dtype, | |
image_encoder=ip_adapter_plus_image_encoder, | |
).to(device) | |
config = self.pipeline.scheduler.config | |
config["timestep_spacing"] = "trailing" | |
self.pipeline.scheduler = DPMSolverMultistepScheduler.from_config(config, use_karras_sigmas=True, algorithm_type="sde-dpmsolver++", final_sigmas_type="zero") | |
self.pipeline.load_ip_adapter(["okaris/ip-adapter-instantid", "okaris/ip-adapter-instantid", "h94/IP-Adapter"], subfolder=[None, None, "sdxl_models"], weight_name=["ip-adapter-instantid.bin", "ip-adapter-instantid.bin", "ip-adapter-plus_sdxl_vit-h.safetensors"]) | |
def generate(self, | |
seed=42, | |
prompt="A person", | |
negative_prompt="blurry, out of focus", | |
guidance_scale=3.0, | |
number_of_images=1, | |
number_of_steps=10, | |
base_image=None, | |
base_image_strength=0.2, | |
style_image=None, | |
style_image_strength=1.0, | |
identity_image_1=None, | |
identity_image_strength_1=1.0, | |
identity_image_2=None, | |
identity_image_strength_2=1.0, | |
depth_image=None, | |
depth_image_strength=0.5, | |
mask_guidance_start=0.0, | |
mask_guidance_end=1.0, | |
): | |
if seed == -1: | |
seed = random.randint(0, 1000000) | |
resolution = 1024 | |
if base_image is not None: | |
base_image = load_and_resize_image(base_image, resolution, resolution) | |
if depth_image is None: | |
depth_image = self.zoe_depth_detector(base_image, detect_resolution=resolution, image_resolution=resolution) | |
else: | |
depth_image = load_and_resize_image(depth_image, resolution, resolution) | |
base_image, depth_image = align_images(base_image, depth_image) | |
if style_image is not None: | |
style_image = load_and_resize_image(style_image, resolution, resolution) | |
else: | |
raise ValueError("You must provide a style image") | |
if identity_image_1 is not None: | |
identity_image_1 = load_and_resize_image(identity_image_1, resolution, resolution) | |
else: | |
raise ValueError("You must provide an identity image") | |
if identity_image_2 is not None: | |
identity_image_2 = load_and_resize_image(identity_image_2, resolution, resolution) | |
else: | |
raise ValueError("You must provide an identity image 2") | |
height, width = base_image.size | |
face_info_1 = self.face_analysis.get(cv2.cvtColor(np.array(identity_image_1), cv2.COLOR_RGB2BGR)) | |
for i, face in enumerate(face_info_1): | |
print(f"Face 1 -{i}: Age: {face['age']}, Gender: {face['gender']}") | |
face_info_1 = sorted(face_info_1, key=lambda x:(x['bbox'][2]-x['bbox'][0])*x['bbox'][3]-x['bbox'][1])[-1] # only use the maximum face | |
face_emb_1 = torch.tensor(face_info_1['embedding']).to("cuda", dtype=self.dtype) | |
face_info_2 = self.face_analysis.get(cv2.cvtColor(np.array(identity_image_2), cv2.COLOR_RGB2BGR)) | |
for i, face in enumerate(face_info_2): | |
print(f"Face 2 -{i}: Age: {face['age']}, Gender: {face['gender']}") | |
face_info_2 = sorted(face_info_2, key=lambda x:(x['bbox'][2]-x['bbox'][0])*x['bbox'][3]-x['bbox'][1])[-1] # only use the maximum face | |
face_emb_2 = torch.tensor(face_info_2['embedding']).to("cuda", dtype=self.dtype) | |
zero = np.zeros((width, height, 3), dtype=np.uint8) | |
# face_kps_identity_image_1 = self.draw_kps(zero, face_info_1['kps']) | |
# face_kps_identity_image_2 = self.draw_kps(zero, face_info_2['kps']) | |
face_info_img2img = self.face_analysis.get(cv2.cvtColor(np.array(base_image), cv2.COLOR_RGB2BGR)) | |
faces_info_img2img = sorted(face_info_img2img, key=lambda x:(x['bbox'][2]-x['bbox'][0])*x['bbox'][3]-x['bbox'][1]) | |
face_info_a = faces_info_img2img[-1] | |
face_info_b = faces_info_img2img[-2] | |
# face_emb_a = torch.tensor(face_info_a['embedding']).to("cuda", dtype=self.dtype) | |
# face_emb_b = torch.tensor(face_info_b['embedding']).to("cuda", dtype=self.dtype) | |
face_kps_identity_image_a = draw_kps(zero, face_info_a['kps']) | |
face_kps_identity_image_b = draw_kps(zero, face_info_b['kps']) | |
general_mask = PIL.Image.fromarray(np.ones((width, height, 3), dtype=np.uint8)) | |
control_mask_1 = zero.copy() | |
x1, y1, x2, y2 = face_info_a["bbox"] | |
x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2) | |
control_mask_1[y1:y2, x1:x2] = 255 | |
control_mask_1 = PIL.Image.fromarray(control_mask_1.astype(np.uint8)) | |
control_mask_2 = zero.copy() | |
x1, y1, x2, y2 = face_info_b["bbox"] | |
x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2) | |
control_mask_2[y1:y2, x1:x2] = 255 | |
control_mask_2 = PIL.Image.fromarray(control_mask_2.astype(np.uint8)) | |
controlnet_masks = [control_mask_1, control_mask_2, general_mask] | |
ip_adapter_images = [face_emb_1, face_emb_2, style_image, ] | |
masks = self.ip_adapter_mask_processor.preprocess([control_mask_1, control_mask_2, general_mask], height=height, width=width) | |
ip_adapter_masks = [mask.unsqueeze(0) for mask in masks] | |
inpaint_mask = torch.logical_or(torch.tensor(np.array(control_mask_1)), torch.tensor(np.array(control_mask_2))).float() | |
inpaint_mask = PIL.Image.fromarray((inpaint_mask.numpy() * 255).astype(np.uint8)).convert("RGB") | |
new_ip_adapter_masks = [] | |
for ip_img, mask in zip(ip_adapter_images, controlnet_masks): | |
if isinstance(ip_img, list): | |
num_images = len(ip_img) | |
mask = mask.repeat(1, num_images, 1, 1) | |
new_ip_adapter_masks.append(mask) | |
generator = torch.Generator(device="cpu").manual_seed(seed) | |
self.pipeline.set_ip_adapter_scale([identity_image_strength_1, identity_image_strength_2, | |
{ | |
"down": { "block_2": [0.0, 0.0] }, #Composition | |
"up": { "block_0": [0.0, style_image_strength, 0.0] } #Style | |
} | |
]) | |
images = self.pipeline( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
guidance_scale=guidance_scale, | |
num_inference_steps=number_of_steps, | |
num_images_per_prompt=number_of_images, | |
ip_adapter_image=ip_adapter_images, | |
cross_attention_kwargs={"ip_adapter_masks": ip_adapter_masks}, | |
image=base_image, | |
mask_image=inpaint_mask, | |
i2i_mask_guidance_start=mask_guidance_start, | |
i2i_mask_guidance_end=mask_guidance_end, | |
control_image=[face_kps_identity_image_a, face_kps_identity_image_b, depth_image], | |
control_mask=controlnet_masks, | |
identity_control_indices=[(0,0), (1,1)], | |
controlnet_conditioning_scale=[identity_image_strength_1, identity_image_strength_2, depth_image_strength], | |
strength=1-base_image_strength, | |
generator=generator, | |
seed=seed, | |
).images | |
return images | |
def patch_onnx_runtime( | |
self, | |
inter_op_num_threads: int = 16, | |
intra_op_num_threads: int = 16, | |
omp_num_threads: int = 16, | |
): | |
import os | |
import onnxruntime as ort | |
os.environ["OMP_NUM_THREADS"] = str(omp_num_threads) | |
_default_session_options = ort.capi._pybind_state.get_default_session_options() | |
def get_default_session_options_new(): | |
_default_session_options.inter_op_num_threads = inter_op_num_threads | |
_default_session_options.intra_op_num_threads = intra_op_num_threads | |
return _default_session_options | |
ort.capi._pybind_state.get_default_session_options = get_default_session_options_new | |