Spaces:
Sleeping
Sleeping
okara chidera
commited on
feat: added ocr scanning
Browse files- app.py +20 -15
- requirements.txt +1 -0
app.py
CHANGED
|
@@ -3,35 +3,40 @@ import easyocr
|
|
| 3 |
from transformers import pipeline
|
| 4 |
import re
|
| 5 |
import json
|
|
|
|
| 6 |
from PIL import Image
|
| 7 |
|
| 8 |
# ---------- INITIALIZE MODELS ----------
|
| 9 |
-
# OCR reader for image text
|
| 10 |
reader = easyocr.Reader(["en"], gpu=False)
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
|
|
|
| 15 |
|
| 16 |
# ---------- HELPERS ----------
|
| 17 |
def extract_text_from_image(image):
|
| 18 |
-
"""Extracts text from
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
result = reader.readtext(image)
|
| 20 |
return " ".join([r[1] for r in result])
|
| 21 |
|
| 22 |
|
| 23 |
def extract_with_ner(text):
|
| 24 |
-
"""Extracts
|
| 25 |
entities = ner_pipeline(text)
|
| 26 |
extracted = {}
|
| 27 |
|
| 28 |
-
#
|
| 29 |
extracted["Email"] = ", ".join(re.findall(r"[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Za-z]{2,}", text)) or None
|
| 30 |
extracted["Phone"] = ", ".join(re.findall(r"\+?\d[\d\s\-]{7,14}", text)) or None
|
| 31 |
extracted["Date"] = ", ".join(re.findall(r"\d{1,2}[\/\-.]\d{1,2}[\/\-.]\d{2,4}", text)) or None
|
| 32 |
extracted["Document Numbers"] = ", ".join(re.findall(r"[A-Z]{1,3}\d{6,10}", text)) or None
|
| 33 |
|
| 34 |
-
#
|
| 35 |
for ent in entities:
|
| 36 |
label = ent["entity_group"]
|
| 37 |
value = ent["word"].strip()
|
|
@@ -43,16 +48,16 @@ def extract_with_ner(text):
|
|
| 43 |
elif label in ["LOC", "ADDRESS"]:
|
| 44 |
extracted.setdefault("Address", set()).add(value)
|
| 45 |
|
| 46 |
-
#
|
| 47 |
-
for
|
| 48 |
-
if isinstance(
|
| 49 |
-
extracted[
|
| 50 |
|
| 51 |
return json.dumps(extracted, indent=2, ensure_ascii=False)
|
| 52 |
|
| 53 |
|
| 54 |
def analyze_kyc_document(image):
|
| 55 |
-
"""Main function to process
|
| 56 |
text = extract_text_from_image(image)
|
| 57 |
structured = extract_with_ner(text)
|
| 58 |
return structured, text
|
|
@@ -73,4 +78,4 @@ with gr.Blocks(title="AI KYC Extractor") as demo:
|
|
| 73 |
extract_btn.click(fn=analyze_kyc_document, inputs=doc_input, outputs=[json_output, text_output])
|
| 74 |
|
| 75 |
if __name__ == "__main__":
|
| 76 |
-
demo.launch(
|
|
|
|
| 3 |
from transformers import pipeline
|
| 4 |
import re
|
| 5 |
import json
|
| 6 |
+
import numpy as np
|
| 7 |
from PIL import Image
|
| 8 |
|
| 9 |
# ---------- INITIALIZE MODELS ----------
|
|
|
|
| 10 |
reader = easyocr.Reader(["en"], gpu=False)
|
| 11 |
+
ner_pipeline = pipeline(
|
| 12 |
+
"token-classification",
|
| 13 |
+
model="Davlan/bert-base-multilingual-cased-ner-hrl",
|
| 14 |
+
aggregation_strategy="simple"
|
| 15 |
+
)
|
| 16 |
|
| 17 |
# ---------- HELPERS ----------
|
| 18 |
def extract_text_from_image(image):
|
| 19 |
+
"""Extracts text from uploaded ID image using EasyOCR."""
|
| 20 |
+
# Convert PIL image → NumPy array for EasyOCR
|
| 21 |
+
if isinstance(image, Image.Image):
|
| 22 |
+
image = np.array(image)
|
| 23 |
+
|
| 24 |
result = reader.readtext(image)
|
| 25 |
return " ".join([r[1] for r in result])
|
| 26 |
|
| 27 |
|
| 28 |
def extract_with_ner(text):
|
| 29 |
+
"""Extracts KYC details using regex + transformer NER."""
|
| 30 |
entities = ner_pipeline(text)
|
| 31 |
extracted = {}
|
| 32 |
|
| 33 |
+
# Regex fields
|
| 34 |
extracted["Email"] = ", ".join(re.findall(r"[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Za-z]{2,}", text)) or None
|
| 35 |
extracted["Phone"] = ", ".join(re.findall(r"\+?\d[\d\s\-]{7,14}", text)) or None
|
| 36 |
extracted["Date"] = ", ".join(re.findall(r"\d{1,2}[\/\-.]\d{1,2}[\/\-.]\d{2,4}", text)) or None
|
| 37 |
extracted["Document Numbers"] = ", ".join(re.findall(r"[A-Z]{1,3}\d{6,10}", text)) or None
|
| 38 |
|
| 39 |
+
# Transformer entities
|
| 40 |
for ent in entities:
|
| 41 |
label = ent["entity_group"]
|
| 42 |
value = ent["word"].strip()
|
|
|
|
| 48 |
elif label in ["LOC", "ADDRESS"]:
|
| 49 |
extracted.setdefault("Address", set()).add(value)
|
| 50 |
|
| 51 |
+
# Flatten sets
|
| 52 |
+
for k, v in extracted.items():
|
| 53 |
+
if isinstance(v, set):
|
| 54 |
+
extracted[k] = ", ".join(v)
|
| 55 |
|
| 56 |
return json.dumps(extracted, indent=2, ensure_ascii=False)
|
| 57 |
|
| 58 |
|
| 59 |
def analyze_kyc_document(image):
|
| 60 |
+
"""Main function to process uploaded KYC image."""
|
| 61 |
text = extract_text_from_image(image)
|
| 62 |
structured = extract_with_ner(text)
|
| 63 |
return structured, text
|
|
|
|
| 78 |
extract_btn.click(fn=analyze_kyc_document, inputs=doc_input, outputs=[json_output, text_output])
|
| 79 |
|
| 80 |
if __name__ == "__main__":
|
| 81 |
+
demo.launch()
|
requirements.txt
CHANGED
|
@@ -3,3 +3,4 @@ easyocr
|
|
| 3 |
torch
|
| 4 |
transformers
|
| 5 |
Pillow
|
|
|
|
|
|
| 3 |
torch
|
| 4 |
transformers
|
| 5 |
Pillow
|
| 6 |
+
numpy
|