Spaces:
Sleeping
Sleeping
okara chidera
commited on
feat: added ocr scanning
Browse files- app.py +68 -43
- requirements.txt +3 -3
app.py
CHANGED
|
@@ -1,51 +1,76 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
import
|
| 3 |
-
from
|
| 4 |
-
import pytesseract
|
| 5 |
import re
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
-
def extract_text(file):
|
| 8 |
-
if not file:
|
| 9 |
-
return ""
|
| 10 |
-
if file.name.endswith(".pdf"):
|
| 11 |
-
text = ""
|
| 12 |
-
with pdfplumber.open(file.name) as pdf:
|
| 13 |
-
for page in pdf.pages:
|
| 14 |
-
text += page.extract_text() or ""
|
| 15 |
-
return text
|
| 16 |
-
else:
|
| 17 |
-
img = Image.open(file.name)
|
| 18 |
-
return pytesseract.image_to_string(img)
|
| 19 |
-
|
| 20 |
-
def analyze_kyc(name, id_doc, selfie_doc, address_doc):
|
| 21 |
-
all_text = "\n".join([
|
| 22 |
-
extract_text(f) for f in [id_doc, selfie_doc, address_doc] if f
|
| 23 |
-
])
|
| 24 |
-
findings = {
|
| 25 |
-
"Applicant Name": name or "N/A",
|
| 26 |
-
"Email": ", ".join(re.findall(r"[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Za-z]{2,}", all_text)) or "N/A",
|
| 27 |
-
"Phone": ", ".join(re.findall(r"\+?\d[\d\s-]{7,14}", all_text)) or "N/A",
|
| 28 |
-
"Detected IDs": ", ".join(re.findall(r"\b[A-Z]{1,3}\d{6,10}\b", all_text)) or "N/A",
|
| 29 |
-
"Possible DOBs": ", ".join(re.findall(r"\b\d{2,4}[-/.]\d{1,2}[-/.]\d{1,2}\b", all_text)) or "N/A",
|
| 30 |
-
}
|
| 31 |
-
summary = "\n".join([f"**{k}:** {v}" for k, v in findings.items()])
|
| 32 |
-
return summary, all_text[:1000]
|
| 33 |
-
|
| 34 |
-
demo = gr.Blocks(title="CreditCopilot — KYC Manager")
|
| 35 |
-
|
| 36 |
-
with demo:
|
| 37 |
-
gr.Markdown("## 🧠 CreditCopilot — KYC Manager\nExtract and summarize KYC documents for quick review.")
|
| 38 |
with gr.Row():
|
| 39 |
with gr.Column(scale=1):
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
selfie_doc = gr.File(label="Selfie / Liveness")
|
| 43 |
-
address_doc = gr.File(label="Proof of Address")
|
| 44 |
-
run_btn = gr.Button("Analyze Documents", variant="primary")
|
| 45 |
with gr.Column(scale=2):
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
|
|
|
| 49 |
|
| 50 |
if __name__ == "__main__":
|
| 51 |
-
demo.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
import easyocr
|
| 3 |
+
from transformers import pipeline
|
|
|
|
| 4 |
import re
|
| 5 |
+
import json
|
| 6 |
+
from PIL import Image
|
| 7 |
+
|
| 8 |
+
# ---------- INITIALIZE MODELS ----------
|
| 9 |
+
# OCR reader for image text
|
| 10 |
+
reader = easyocr.Reader(["en"], gpu=False)
|
| 11 |
+
|
| 12 |
+
# NER model (fine-tuned for named entity extraction)
|
| 13 |
+
ner_pipeline = pipeline("token-classification", model="Davlan/bert-base-multilingual-cased-ner-hrl", aggregation_strategy="simple")
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
# ---------- HELPERS ----------
|
| 17 |
+
def extract_text_from_image(image):
|
| 18 |
+
"""Extracts text from an uploaded ID or document image using EasyOCR."""
|
| 19 |
+
result = reader.readtext(image)
|
| 20 |
+
return " ".join([r[1] for r in result])
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
def extract_with_ner(text):
|
| 24 |
+
"""Extracts key identity info using both regex + transformer-based NER."""
|
| 25 |
+
entities = ner_pipeline(text)
|
| 26 |
+
extracted = {}
|
| 27 |
+
|
| 28 |
+
# Pre-fill with regex findings
|
| 29 |
+
extracted["Email"] = ", ".join(re.findall(r"[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Za-z]{2,}", text)) or None
|
| 30 |
+
extracted["Phone"] = ", ".join(re.findall(r"\+?\d[\d\s\-]{7,14}", text)) or None
|
| 31 |
+
extracted["Date"] = ", ".join(re.findall(r"\d{1,2}[\/\-.]\d{1,2}[\/\-.]\d{2,4}", text)) or None
|
| 32 |
+
extracted["Document Numbers"] = ", ".join(re.findall(r"[A-Z]{1,3}\d{6,10}", text)) or None
|
| 33 |
+
|
| 34 |
+
# Add entities from transformer
|
| 35 |
+
for ent in entities:
|
| 36 |
+
label = ent["entity_group"]
|
| 37 |
+
value = ent["word"].strip()
|
| 38 |
+
|
| 39 |
+
if label in ["PER", "NAME"]:
|
| 40 |
+
extracted.setdefault("Full Name", set()).add(value)
|
| 41 |
+
elif label in ["ORG", "GOVERNMENT", "ID"]:
|
| 42 |
+
extracted.setdefault("Issuing Authority", set()).add(value)
|
| 43 |
+
elif label in ["LOC", "ADDRESS"]:
|
| 44 |
+
extracted.setdefault("Address", set()).add(value)
|
| 45 |
+
|
| 46 |
+
# Convert sets to strings
|
| 47 |
+
for key, val in extracted.items():
|
| 48 |
+
if isinstance(val, set):
|
| 49 |
+
extracted[key] = ", ".join(val)
|
| 50 |
+
|
| 51 |
+
return json.dumps(extracted, indent=2, ensure_ascii=False)
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
def analyze_kyc_document(image):
|
| 55 |
+
"""Main function to process the uploaded KYC image."""
|
| 56 |
+
text = extract_text_from_image(image)
|
| 57 |
+
structured = extract_with_ner(text)
|
| 58 |
+
return structured, text
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
# ---------- UI ----------
|
| 62 |
+
with gr.Blocks(title="AI KYC Extractor") as demo:
|
| 63 |
+
gr.Markdown("## 🧠 AI KYC Document Extractor\nUpload an ID, Passport, or Driver’s License to extract structured data with OCR + AI.")
|
| 64 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
with gr.Row():
|
| 66 |
with gr.Column(scale=1):
|
| 67 |
+
doc_input = gr.Image(type="pil", label="Upload Document")
|
| 68 |
+
extract_btn = gr.Button("Run AI Extraction", variant="primary")
|
|
|
|
|
|
|
|
|
|
| 69 |
with gr.Column(scale=2):
|
| 70 |
+
json_output = gr.Textbox(label="Extracted Information (JSON)", lines=12)
|
| 71 |
+
text_output = gr.Textbox(label="Extracted Raw Text", lines=10)
|
| 72 |
+
|
| 73 |
+
extract_btn.click(fn=analyze_kyc_document, inputs=doc_input, outputs=[json_output, text_output])
|
| 74 |
|
| 75 |
if __name__ == "__main__":
|
| 76 |
+
demo.launch(share=True)
|
requirements.txt
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
-
# requirements.txt
|
| 2 |
gradio==4.44.1
|
| 3 |
-
|
| 4 |
-
|
|
|
|
| 5 |
Pillow
|
|
|
|
|
|
|
| 1 |
gradio==4.44.1
|
| 2 |
+
easyocr
|
| 3 |
+
torch
|
| 4 |
+
transformers
|
| 5 |
Pillow
|