Spaces:
Sleeping
Sleeping
# -------------------------------------------------------- | |
# SiamMask | |
# Licensed under The MIT License | |
# Written by Qiang Wang (wangqiang2015 at ia.ac.cn) | |
# -------------------------------------------------------- | |
import argparse | |
import logging | |
import os | |
import cv2 | |
import shutil | |
import time | |
import json | |
import math | |
import torch | |
from torch.utils.data import DataLoader | |
from utils.log_helper import init_log, print_speed, add_file_handler, Dummy | |
from utils.load_helper import load_pretrain, restore_from | |
from utils.average_meter_helper import AverageMeter | |
from datasets.siam_mask_dataset import DataSets | |
from utils.lr_helper import build_lr_scheduler | |
from tensorboardX import SummaryWriter | |
from utils.config_helper import load_config | |
from torch.utils.collect_env import get_pretty_env_info | |
torch.backends.cudnn.benchmark = True | |
parser = argparse.ArgumentParser(description='PyTorch Tracking SiamMask Training') | |
parser.add_argument('-j', '--workers', default=16, type=int, metavar='N', | |
help='number of data loading workers (default: 16)') | |
parser.add_argument('--epochs', default=50, type=int, metavar='N', | |
help='number of total epochs to run') | |
parser.add_argument('--start-epoch', default=0, type=int, metavar='N', | |
help='manual epoch number (useful on restarts)') | |
parser.add_argument('-b', '--batch', default=64, type=int, | |
metavar='N', help='mini-batch size (default: 64)') | |
parser.add_argument('--lr', '--learning-rate', default=0.001, type=float, | |
metavar='LR', help='initial learning rate') | |
parser.add_argument('--momentum', default=0.9, type=float, metavar='M', | |
help='momentum') | |
parser.add_argument('--weight-decay', '--wd', default=1e-4, type=float, | |
metavar='W', help='weight decay (default: 1e-4)') | |
parser.add_argument('--clip', default=10.0, type=float, | |
help='gradient clip value') | |
parser.add_argument('--print-freq', '-p', default=10, type=int, | |
metavar='N', help='print frequency (default: 10)') | |
parser.add_argument('--resume', default='', type=str, metavar='PATH', | |
help='path to latest checkpoint (default: none)') | |
parser.add_argument('--pretrained', dest='pretrained', default='', | |
help='use pre-trained model') | |
parser.add_argument('--config', dest='config', required=True, | |
help='hyperparameter of SiamMask in json format') | |
parser.add_argument('--arch', dest='arch', default='', choices=['Custom',], | |
help='architecture of pretrained model') | |
parser.add_argument('-l', '--log', default="log.txt", type=str, | |
help='log file') | |
parser.add_argument('-s', '--save_dir', default='snapshot', type=str, | |
help='save dir') | |
parser.add_argument('--log-dir', default='board', help='TensorBoard log dir') | |
best_acc = 0. | |
def collect_env_info(): | |
env_str = get_pretty_env_info() | |
env_str += "\n OpenCV ({})".format(cv2.__version__) | |
return env_str | |
def build_data_loader(cfg): | |
logger = logging.getLogger('global') | |
logger.info("build train dataset") # train_dataset | |
train_set = DataSets(cfg['train_datasets'], cfg['anchors'], args.epochs) | |
train_set.shuffle() | |
logger.info("build val dataset") # val_dataset | |
if not 'val_datasets' in cfg.keys(): | |
cfg['val_datasets'] = cfg['train_datasets'] | |
val_set = DataSets(cfg['val_datasets'], cfg['anchors']) | |
val_set.shuffle() | |
train_loader = DataLoader(train_set, batch_size=args.batch, num_workers=args.workers, | |
pin_memory=True, sampler=None) | |
val_loader = DataLoader(val_set, batch_size=args.batch, num_workers=args.workers, | |
pin_memory=True, sampler=None) | |
logger.info('build dataset done') | |
return train_loader, val_loader | |
def build_opt_lr(model, cfg, args, epoch): | |
backbone_feature = model.features.param_groups(cfg['lr']['start_lr'], cfg['lr']['feature_lr_mult']) | |
if len(backbone_feature) == 0: | |
trainable_params = model.rpn_model.param_groups(cfg['lr']['start_lr'], cfg['lr']['rpn_lr_mult'], 'mask') | |
else: | |
trainable_params = backbone_feature + \ | |
model.rpn_model.param_groups(cfg['lr']['start_lr'], cfg['lr']['rpn_lr_mult']) + \ | |
model.mask_model.param_groups(cfg['lr']['start_lr'], cfg['lr']['mask_lr_mult']) | |
optimizer = torch.optim.SGD(trainable_params, args.lr, | |
momentum=args.momentum, | |
weight_decay=args.weight_decay) | |
lr_scheduler = build_lr_scheduler(optimizer, cfg['lr'], epochs=args.epochs) | |
lr_scheduler.step(epoch) | |
return optimizer, lr_scheduler | |
def main(): | |
global args, best_acc, tb_writer, logger | |
args = parser.parse_args() | |
init_log('global', logging.INFO) | |
if args.log != "": | |
add_file_handler('global', args.log, logging.INFO) | |
logger = logging.getLogger('global') | |
logger.info("\n" + collect_env_info()) | |
logger.info(args) | |
cfg = load_config(args) | |
logger.info("config \n{}".format(json.dumps(cfg, indent=4))) | |
if args.log_dir: | |
tb_writer = SummaryWriter(args.log_dir) | |
else: | |
tb_writer = Dummy() | |
# build dataset | |
train_loader, val_loader = build_data_loader(cfg) | |
if args.arch == 'Custom': | |
from custom import Custom | |
model = Custom(pretrain=True, anchors=cfg['anchors']) | |
else: | |
exit() | |
logger.info(model) | |
if args.pretrained: | |
model = load_pretrain(model, args.pretrained) | |
model = model.cuda() | |
dist_model = torch.nn.DataParallel(model, list(range(torch.cuda.device_count()))).cuda() | |
if args.resume and args.start_epoch != 0: | |
model.features.unfix((args.start_epoch - 1) / args.epochs) | |
optimizer, lr_scheduler = build_opt_lr(model, cfg, args, args.start_epoch) | |
# optionally resume from a checkpoint | |
if args.resume: | |
assert os.path.isfile(args.resume), '{} is not a valid file'.format(args.resume) | |
model, optimizer, args.start_epoch, best_acc, arch = restore_from(model, optimizer, args.resume) | |
dist_model = torch.nn.DataParallel(model, list(range(torch.cuda.device_count()))).cuda() | |
logger.info(lr_scheduler) | |
logger.info('model prepare done') | |
train(train_loader, dist_model, optimizer, lr_scheduler, args.start_epoch, cfg) | |
def train(train_loader, model, optimizer, lr_scheduler, epoch, cfg): | |
global tb_index, best_acc, cur_lr, logger | |
cur_lr = lr_scheduler.get_cur_lr() | |
logger = logging.getLogger('global') | |
avg = AverageMeter() | |
model.train() | |
model = model.cuda() | |
end = time.time() | |
def is_valid_number(x): | |
return not(math.isnan(x) or math.isinf(x) or x > 1e4) | |
num_per_epoch = len(train_loader.dataset) // args.epochs // args.batch | |
start_epoch = epoch | |
epoch = epoch | |
for iter, input in enumerate(train_loader): | |
if epoch != iter // num_per_epoch + start_epoch: # next epoch | |
epoch = iter // num_per_epoch + start_epoch | |
if not os.path.exists(args.save_dir): # makedir/save model | |
os.makedirs(args.save_dir) | |
save_checkpoint({ | |
'epoch': epoch, | |
'arch': args.arch, | |
'state_dict': model.module.state_dict(), | |
'best_acc': best_acc, | |
'optimizer': optimizer.state_dict(), | |
'anchor_cfg': cfg['anchors'] | |
}, False, | |
os.path.join(args.save_dir, 'checkpoint_e%d.pth' % (epoch)), | |
os.path.join(args.save_dir, 'best.pth')) | |
if epoch == args.epochs: | |
return | |
if model.module.features.unfix(epoch/args.epochs): | |
logger.info('unfix part model.') | |
optimizer, lr_scheduler = build_opt_lr(model.module, cfg, args, epoch) | |
lr_scheduler.step(epoch) | |
cur_lr = lr_scheduler.get_cur_lr() | |
logger.info('epoch:{}'.format(epoch)) | |
tb_index = iter | |
if iter % num_per_epoch == 0 and iter != 0: | |
for idx, pg in enumerate(optimizer.param_groups): | |
logger.info("epoch {} lr {}".format(epoch, pg['lr'])) | |
tb_writer.add_scalar('lr/group%d' % (idx+1), pg['lr'], tb_index) | |
data_time = time.time() - end | |
avg.update(data_time=data_time) | |
x = { | |
'cfg': cfg, | |
'template': torch.autograd.Variable(input[0]).cuda(), | |
'search': torch.autograd.Variable(input[1]).cuda(), | |
'label_cls': torch.autograd.Variable(input[2]).cuda(), | |
'label_loc': torch.autograd.Variable(input[3]).cuda(), | |
'label_loc_weight': torch.autograd.Variable(input[4]).cuda(), | |
'label_mask': torch.autograd.Variable(input[6]).cuda(), | |
'label_mask_weight': torch.autograd.Variable(input[7]).cuda(), | |
} | |
outputs = model(x) | |
rpn_cls_loss, rpn_loc_loss, rpn_mask_loss = torch.mean(outputs['losses'][0]), torch.mean(outputs['losses'][1]), torch.mean(outputs['losses'][2]) | |
mask_iou_mean, mask_iou_at_5, mask_iou_at_7 = torch.mean(outputs['accuracy'][0]), torch.mean(outputs['accuracy'][1]), torch.mean(outputs['accuracy'][2]) | |
cls_weight, reg_weight, mask_weight = cfg['loss']['weight'] | |
loss = rpn_cls_loss * cls_weight + rpn_loc_loss * reg_weight + rpn_mask_loss * mask_weight | |
optimizer.zero_grad() | |
loss.backward() | |
if cfg['clip']['split']: | |
torch.nn.utils.clip_grad_norm_(model.module.features.parameters(), cfg['clip']['feature']) | |
torch.nn.utils.clip_grad_norm_(model.module.rpn_model.parameters(), cfg['clip']['rpn']) | |
torch.nn.utils.clip_grad_norm_(model.module.mask_model.parameters(), cfg['clip']['mask']) | |
else: | |
torch.nn.utils.clip_grad_norm_(model.parameters(), args.clip) # gradient clip | |
if is_valid_number(loss.item()): | |
optimizer.step() | |
siammask_loss = loss.item() | |
batch_time = time.time() - end | |
avg.update(batch_time=batch_time, rpn_cls_loss=rpn_cls_loss, rpn_loc_loss=rpn_loc_loss, | |
rpn_mask_loss=rpn_mask_loss, siammask_loss=siammask_loss, | |
mask_iou_mean=mask_iou_mean, mask_iou_at_5=mask_iou_at_5, mask_iou_at_7=mask_iou_at_7) | |
tb_writer.add_scalar('loss/cls', rpn_cls_loss, tb_index) | |
tb_writer.add_scalar('loss/loc', rpn_loc_loss, tb_index) | |
tb_writer.add_scalar('loss/mask', rpn_mask_loss, tb_index) | |
tb_writer.add_scalar('mask/mIoU', mask_iou_mean, tb_index) | |
tb_writer.add_scalar('mask/AP@.5', mask_iou_at_5, tb_index) | |
tb_writer.add_scalar('mask/AP@.7', mask_iou_at_7, tb_index) | |
end = time.time() | |
if (iter + 1) % args.print_freq == 0: | |
logger.info('Epoch: [{0}][{1}/{2}] lr: {lr:.6f}\t{batch_time:s}\t{data_time:s}' | |
'\t{rpn_cls_loss:s}\t{rpn_loc_loss:s}\t{rpn_mask_loss:s}\t{siammask_loss:s}' | |
'\t{mask_iou_mean:s}\t{mask_iou_at_5:s}\t{mask_iou_at_7:s}'.format( | |
epoch+1, (iter + 1) % num_per_epoch, num_per_epoch, lr=cur_lr, batch_time=avg.batch_time, | |
data_time=avg.data_time, rpn_cls_loss=avg.rpn_cls_loss, rpn_loc_loss=avg.rpn_loc_loss, | |
rpn_mask_loss=avg.rpn_mask_loss, siammask_loss=avg.siammask_loss, mask_iou_mean=avg.mask_iou_mean, | |
mask_iou_at_5=avg.mask_iou_at_5,mask_iou_at_7=avg.mask_iou_at_7)) | |
print_speed(iter + 1, avg.batch_time.avg, args.epochs * num_per_epoch) | |
def save_checkpoint(state, is_best, filename='checkpoint.pth', best_file='model_best.pth'): | |
torch.save(state, filename) | |
if is_best: | |
shutil.copyfile(filename, best_file) | |
if __name__ == '__main__': | |
main() | |