Spaces:
Runtime error
Runtime error
| # coding=utf-8 | |
| # Copyright 2024 HuggingFace Inc. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import gc | |
| import random | |
| import unittest | |
| import numpy as np | |
| import torch | |
| from PIL import Image | |
| from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer | |
| from diffusers import ( | |
| AutoencoderKL, | |
| AutoPipelineForInpainting, | |
| PNDMScheduler, | |
| StableDiffusionPAGInpaintPipeline, | |
| UNet2DConditionModel, | |
| ) | |
| from diffusers.utils.testing_utils import ( | |
| backend_empty_cache, | |
| enable_full_determinism, | |
| floats_tensor, | |
| load_image, | |
| require_torch_accelerator, | |
| slow, | |
| torch_device, | |
| ) | |
| from ..pipeline_params import ( | |
| TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, | |
| TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, | |
| TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS, | |
| ) | |
| from ..test_pipelines_common import ( | |
| IPAdapterTesterMixin, | |
| PipelineFromPipeTesterMixin, | |
| PipelineLatentTesterMixin, | |
| PipelineTesterMixin, | |
| ) | |
| enable_full_determinism() | |
| class StableDiffusionPAGInpaintPipelineFastTests( | |
| PipelineTesterMixin, | |
| IPAdapterTesterMixin, | |
| PipelineLatentTesterMixin, | |
| PipelineFromPipeTesterMixin, | |
| unittest.TestCase, | |
| ): | |
| pipeline_class = StableDiffusionPAGInpaintPipeline | |
| params = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS.union({"pag_scale", "pag_adaptive_scale"}) | |
| batch_params = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS | |
| image_params = frozenset([]) | |
| image_latents_params = frozenset([]) | |
| callback_cfg_params = TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS.union( | |
| {"add_text_embeds", "add_time_ids", "mask", "masked_image_latents"} | |
| ) | |
| def get_dummy_components(self, time_cond_proj_dim=None): | |
| torch.manual_seed(0) | |
| unet = UNet2DConditionModel( | |
| block_out_channels=(32, 64), | |
| time_cond_proj_dim=time_cond_proj_dim, | |
| layers_per_block=2, | |
| sample_size=32, | |
| in_channels=4, | |
| out_channels=4, | |
| down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), | |
| up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), | |
| cross_attention_dim=32, | |
| ) | |
| scheduler = PNDMScheduler(skip_prk_steps=True) | |
| torch.manual_seed(0) | |
| vae = AutoencoderKL( | |
| block_out_channels=[32, 64], | |
| in_channels=3, | |
| out_channels=3, | |
| down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], | |
| up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], | |
| latent_channels=4, | |
| ) | |
| torch.manual_seed(0) | |
| text_encoder_config = CLIPTextConfig( | |
| bos_token_id=0, | |
| eos_token_id=2, | |
| hidden_size=32, | |
| intermediate_size=37, | |
| layer_norm_eps=1e-05, | |
| num_attention_heads=4, | |
| num_hidden_layers=5, | |
| pad_token_id=1, | |
| vocab_size=1000, | |
| ) | |
| text_encoder = CLIPTextModel(text_encoder_config) | |
| tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") | |
| components = { | |
| "unet": unet, | |
| "scheduler": scheduler, | |
| "vae": vae, | |
| "text_encoder": text_encoder, | |
| "tokenizer": tokenizer, | |
| "safety_checker": None, | |
| "feature_extractor": None, | |
| "image_encoder": None, | |
| } | |
| return components | |
| def get_dummy_inputs(self, device, seed=0): | |
| # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched | |
| image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device) | |
| image = image.cpu().permute(0, 2, 3, 1)[0] | |
| init_image = Image.fromarray(np.uint8(image)).convert("RGB").resize((64, 64)) | |
| # create mask | |
| image[8:, 8:, :] = 255 | |
| mask_image = Image.fromarray(np.uint8(image)).convert("L").resize((64, 64)) | |
| if str(device).startswith("mps"): | |
| generator = torch.manual_seed(seed) | |
| else: | |
| generator = torch.Generator(device=device).manual_seed(seed) | |
| inputs = { | |
| "prompt": "A painting of a squirrel eating a burger", | |
| "image": init_image, | |
| "mask_image": mask_image, | |
| "generator": generator, | |
| "num_inference_steps": 2, | |
| "guidance_scale": 6.0, | |
| "strength": 1.0, | |
| "pag_scale": 0.9, | |
| "output_type": "np", | |
| } | |
| return inputs | |
| def test_pag_applied_layers(self): | |
| device = "cpu" # ensure determinism for the device-dependent torch.Generator | |
| components = self.get_dummy_components() | |
| # base pipeline | |
| pipe = self.pipeline_class(**components) | |
| pipe = pipe.to(device) | |
| pipe.set_progress_bar_config(disable=None) | |
| # pag_applied_layers = ["mid","up","down"] should apply to all self-attention layers | |
| all_self_attn_layers = [k for k in pipe.unet.attn_processors.keys() if "attn1" in k] | |
| original_attn_procs = pipe.unet.attn_processors | |
| pag_layers = [ | |
| "down", | |
| "mid", | |
| "up", | |
| ] | |
| pipe._set_pag_attn_processor(pag_applied_layers=pag_layers, do_classifier_free_guidance=False) | |
| assert set(pipe.pag_attn_processors) == set(all_self_attn_layers) | |
| # pag_applied_layers = ["mid"], or ["mid.block_0"] or ["mid.block_0.attentions_0"] should apply to all self-attention layers in mid_block, i.e. | |
| # mid_block.attentions.0.transformer_blocks.0.attn1.processor | |
| # mid_block.attentions.0.transformer_blocks.1.attn1.processor | |
| all_self_attn_mid_layers = [ | |
| "mid_block.attentions.0.transformer_blocks.0.attn1.processor", | |
| # "mid_block.attentions.0.transformer_blocks.1.attn1.processor", | |
| ] | |
| pipe.unet.set_attn_processor(original_attn_procs.copy()) | |
| pag_layers = ["mid"] | |
| pipe._set_pag_attn_processor(pag_applied_layers=pag_layers, do_classifier_free_guidance=False) | |
| assert set(pipe.pag_attn_processors) == set(all_self_attn_mid_layers) | |
| pipe.unet.set_attn_processor(original_attn_procs.copy()) | |
| pag_layers = ["mid_block"] | |
| pipe._set_pag_attn_processor(pag_applied_layers=pag_layers, do_classifier_free_guidance=False) | |
| assert set(pipe.pag_attn_processors) == set(all_self_attn_mid_layers) | |
| pipe.unet.set_attn_processor(original_attn_procs.copy()) | |
| pag_layers = ["mid_block.attentions.0"] | |
| pipe._set_pag_attn_processor(pag_applied_layers=pag_layers, do_classifier_free_guidance=False) | |
| assert set(pipe.pag_attn_processors) == set(all_self_attn_mid_layers) | |
| # pag_applied_layers = ["mid.block_0.attentions_1"] does not exist in the model | |
| pipe.unet.set_attn_processor(original_attn_procs.copy()) | |
| pag_layers = ["mid_block.attentions.1"] | |
| with self.assertRaises(ValueError): | |
| pipe._set_pag_attn_processor(pag_applied_layers=pag_layers, do_classifier_free_guidance=False) | |
| # pag_applied_layers = "down" should apply to all self-attention layers in down_blocks | |
| # down_blocks.1.attentions.0.transformer_blocks.0.attn1.processor | |
| # down_blocks.1.attentions.0.transformer_blocks.1.attn1.processor | |
| # down_blocks.1.attentions.0.transformer_blocks.0.attn1.processor | |
| pipe.unet.set_attn_processor(original_attn_procs.copy()) | |
| pag_layers = ["down"] | |
| pipe._set_pag_attn_processor(pag_applied_layers=pag_layers, do_classifier_free_guidance=False) | |
| assert len(pipe.pag_attn_processors) == 2 | |
| pipe.unet.set_attn_processor(original_attn_procs.copy()) | |
| pag_layers = ["down_blocks.0"] | |
| with self.assertRaises(ValueError): | |
| pipe._set_pag_attn_processor(pag_applied_layers=pag_layers, do_classifier_free_guidance=False) | |
| pipe.unet.set_attn_processor(original_attn_procs.copy()) | |
| pag_layers = ["down_blocks.1"] | |
| pipe._set_pag_attn_processor(pag_applied_layers=pag_layers, do_classifier_free_guidance=False) | |
| assert len(pipe.pag_attn_processors) == 2 | |
| pipe.unet.set_attn_processor(original_attn_procs.copy()) | |
| pag_layers = ["down_blocks.1.attentions.1"] | |
| pipe._set_pag_attn_processor(pag_applied_layers=pag_layers, do_classifier_free_guidance=False) | |
| assert len(pipe.pag_attn_processors) == 1 | |
| def test_pag_inference(self): | |
| device = "cpu" # ensure determinism for the device-dependent torch.Generator | |
| components = self.get_dummy_components() | |
| pipe_pag = self.pipeline_class(**components, pag_applied_layers=["mid", "up", "down"]) | |
| pipe_pag = pipe_pag.to(device) | |
| pipe_pag.set_progress_bar_config(disable=None) | |
| inputs = self.get_dummy_inputs(device) | |
| image = pipe_pag(**inputs).images | |
| image_slice = image[0, -3:, -3:, -1] | |
| assert image.shape == ( | |
| 1, | |
| 64, | |
| 64, | |
| 3, | |
| ), f"the shape of the output image should be (1, 64, 64, 3) but got {image.shape}" | |
| expected_slice = np.array([0.7190, 0.5807, 0.6007, 0.5600, 0.6350, 0.6639, 0.5680, 0.5664, 0.5230]) | |
| max_diff = np.abs(image_slice.flatten() - expected_slice).max() | |
| assert max_diff < 1e-3, f"output is different from expected, {image_slice.flatten()}" | |
| def test_encode_prompt_works_in_isolation(self): | |
| extra_required_param_value_dict = { | |
| "device": torch.device(torch_device).type, | |
| "do_classifier_free_guidance": self.get_dummy_inputs(device=torch_device).get("guidance_scale", 1.0) > 1.0, | |
| } | |
| return super().test_encode_prompt_works_in_isolation(extra_required_param_value_dict, atol=1e-3, rtol=1e-3) | |
| class StableDiffusionPAGPipelineIntegrationTests(unittest.TestCase): | |
| pipeline_class = StableDiffusionPAGInpaintPipeline | |
| repo_id = "runwayml/stable-diffusion-v1-5" | |
| def setUp(self): | |
| super().setUp() | |
| gc.collect() | |
| backend_empty_cache(torch_device) | |
| def tearDown(self): | |
| super().tearDown() | |
| gc.collect() | |
| backend_empty_cache(torch_device) | |
| def get_inputs(self, device, generator_device="cpu", seed=0, guidance_scale=7.0): | |
| img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png" | |
| mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png" | |
| init_image = load_image(img_url).convert("RGB") | |
| mask_image = load_image(mask_url).convert("RGB") | |
| generator = torch.Generator(device=generator_device).manual_seed(seed) | |
| inputs = { | |
| "prompt": "A majestic tiger sitting on a bench", | |
| "generator": generator, | |
| "image": init_image, | |
| "mask_image": mask_image, | |
| "strength": 0.8, | |
| "num_inference_steps": 3, | |
| "guidance_scale": guidance_scale, | |
| "pag_scale": 3.0, | |
| "output_type": "np", | |
| } | |
| return inputs | |
| def test_pag_cfg(self): | |
| pipeline = AutoPipelineForInpainting.from_pretrained(self.repo_id, enable_pag=True, torch_dtype=torch.float16) | |
| pipeline.enable_model_cpu_offload(device=torch_device) | |
| pipeline.set_progress_bar_config(disable=None) | |
| inputs = self.get_inputs(torch_device) | |
| image = pipeline(**inputs).images | |
| image_slice = image[0, -3:, -3:, -1].flatten() | |
| assert image.shape == (1, 512, 512, 3) | |
| expected_slice = np.array( | |
| [0.38793945, 0.4111328, 0.47924805, 0.39208984, 0.4165039, 0.41674805, 0.37060547, 0.36791992, 0.40625] | |
| ) | |
| assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3, ( | |
| f"output is different from expected, {image_slice.flatten()}" | |
| ) | |
| def test_pag_uncond(self): | |
| pipeline = AutoPipelineForInpainting.from_pretrained(self.repo_id, enable_pag=True, torch_dtype=torch.float16) | |
| pipeline.enable_model_cpu_offload(device=torch_device) | |
| pipeline.set_progress_bar_config(disable=None) | |
| inputs = self.get_inputs(torch_device, guidance_scale=0.0) | |
| image = pipeline(**inputs).images | |
| image_slice = image[0, -3:, -3:, -1].flatten() | |
| assert image.shape == (1, 512, 512, 3) | |
| expected_slice = np.array( | |
| [0.3876953, 0.40356445, 0.4934082, 0.39697266, 0.41674805, 0.41015625, 0.375, 0.36914062, 0.40649414] | |
| ) | |
| assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3, ( | |
| f"output is different from expected, {image_slice.flatten()}" | |
| ) | |