Spaces:
Runtime error
Runtime error
| # coding=utf-8 | |
| # Copyright 2024 HuggingFace Inc. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import gc | |
| import inspect | |
| import random | |
| import unittest | |
| import numpy as np | |
| import torch | |
| from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer | |
| from diffusers import ( | |
| AutoencoderKL, | |
| AutoencoderTiny, | |
| AutoPipelineForImage2Image, | |
| EulerDiscreteScheduler, | |
| StableDiffusionImg2ImgPipeline, | |
| StableDiffusionPAGImg2ImgPipeline, | |
| UNet2DConditionModel, | |
| ) | |
| from diffusers.utils.testing_utils import ( | |
| backend_empty_cache, | |
| enable_full_determinism, | |
| floats_tensor, | |
| load_image, | |
| require_torch_accelerator, | |
| slow, | |
| torch_device, | |
| ) | |
| from ..pipeline_params import ( | |
| IMAGE_TO_IMAGE_IMAGE_PARAMS, | |
| TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, | |
| TEXT_GUIDED_IMAGE_VARIATION_PARAMS, | |
| TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS, | |
| ) | |
| from ..test_pipelines_common import ( | |
| IPAdapterTesterMixin, | |
| PipelineKarrasSchedulerTesterMixin, | |
| PipelineLatentTesterMixin, | |
| PipelineTesterMixin, | |
| ) | |
| enable_full_determinism() | |
| class StableDiffusionPAGImg2ImgPipelineFastTests( | |
| IPAdapterTesterMixin, | |
| PipelineLatentTesterMixin, | |
| PipelineKarrasSchedulerTesterMixin, | |
| PipelineTesterMixin, | |
| unittest.TestCase, | |
| ): | |
| pipeline_class = StableDiffusionPAGImg2ImgPipeline | |
| params = TEXT_GUIDED_IMAGE_VARIATION_PARAMS.union({"pag_scale", "pag_adaptive_scale"}) - {"height", "width"} | |
| required_optional_params = PipelineTesterMixin.required_optional_params - {"latents"} | |
| batch_params = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS | |
| image_params = IMAGE_TO_IMAGE_IMAGE_PARAMS | |
| image_latents_params = IMAGE_TO_IMAGE_IMAGE_PARAMS | |
| callback_cfg_params = TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS | |
| def get_dummy_components(self, time_cond_proj_dim=None): | |
| torch.manual_seed(0) | |
| unet = UNet2DConditionModel( | |
| block_out_channels=(32, 64), | |
| layers_per_block=2, | |
| time_cond_proj_dim=time_cond_proj_dim, | |
| sample_size=32, | |
| in_channels=4, | |
| out_channels=4, | |
| down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), | |
| up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), | |
| cross_attention_dim=32, | |
| ) | |
| scheduler = EulerDiscreteScheduler( | |
| beta_start=0.00085, | |
| beta_end=0.012, | |
| steps_offset=1, | |
| beta_schedule="scaled_linear", | |
| timestep_spacing="leading", | |
| ) | |
| torch.manual_seed(0) | |
| vae = AutoencoderKL( | |
| block_out_channels=[32, 64], | |
| in_channels=3, | |
| out_channels=3, | |
| down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], | |
| up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], | |
| latent_channels=4, | |
| sample_size=128, | |
| ) | |
| text_encoder_config = CLIPTextConfig( | |
| bos_token_id=0, | |
| eos_token_id=2, | |
| hidden_size=32, | |
| intermediate_size=37, | |
| layer_norm_eps=1e-05, | |
| num_attention_heads=4, | |
| num_hidden_layers=5, | |
| pad_token_id=1, | |
| vocab_size=1000, | |
| ) | |
| text_encoder = CLIPTextModel(text_encoder_config) | |
| tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") | |
| components = { | |
| "unet": unet, | |
| "scheduler": scheduler, | |
| "vae": vae, | |
| "text_encoder": text_encoder, | |
| "tokenizer": tokenizer, | |
| "safety_checker": None, | |
| "feature_extractor": None, | |
| "image_encoder": None, | |
| } | |
| return components | |
| def get_dummy_tiny_autoencoder(self): | |
| return AutoencoderTiny(in_channels=3, out_channels=3, latent_channels=4) | |
| def get_dummy_inputs(self, device, seed=0): | |
| image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device) | |
| image = image / 2 + 0.5 | |
| if str(device).startswith("mps"): | |
| generator = torch.manual_seed(seed) | |
| else: | |
| generator = torch.Generator(device=device).manual_seed(seed) | |
| inputs = { | |
| "prompt": "A painting of a squirrel eating a burger", | |
| "image": image, | |
| "generator": generator, | |
| "num_inference_steps": 2, | |
| "guidance_scale": 6.0, | |
| "pag_scale": 0.9, | |
| "output_type": "np", | |
| } | |
| return inputs | |
| def test_pag_disable_enable(self): | |
| device = "cpu" # ensure determinism for the device-dependent torch.Generator | |
| components = self.get_dummy_components() | |
| # base pipeline (expect same output when pag is disabled) | |
| pipe_sd = StableDiffusionImg2ImgPipeline(**components) | |
| pipe_sd = pipe_sd.to(device) | |
| pipe_sd.set_progress_bar_config(disable=None) | |
| inputs = self.get_dummy_inputs(device) | |
| del inputs["pag_scale"] | |
| assert "pag_scale" not in inspect.signature(pipe_sd.__call__).parameters, ( | |
| f"`pag_scale` should not be a call parameter of the base pipeline {pipe_sd.__class__.__name__}." | |
| ) | |
| out = pipe_sd(**inputs).images[0, -3:, -3:, -1] | |
| # pag disabled with pag_scale=0.0 | |
| pipe_pag = self.pipeline_class(**components) | |
| pipe_pag = pipe_pag.to(device) | |
| pipe_pag.set_progress_bar_config(disable=None) | |
| inputs = self.get_dummy_inputs(device) | |
| inputs["pag_scale"] = 0.0 | |
| out_pag_disabled = pipe_pag(**inputs).images[0, -3:, -3:, -1] | |
| # pag enabled | |
| pipe_pag = self.pipeline_class(**components, pag_applied_layers=["mid", "up", "down"]) | |
| pipe_pag = pipe_pag.to(device) | |
| pipe_pag.set_progress_bar_config(disable=None) | |
| inputs = self.get_dummy_inputs(device) | |
| out_pag_enabled = pipe_pag(**inputs).images[0, -3:, -3:, -1] | |
| assert np.abs(out.flatten() - out_pag_disabled.flatten()).max() < 1e-3 | |
| assert np.abs(out.flatten() - out_pag_enabled.flatten()).max() > 1e-3 | |
| def test_pag_inference(self): | |
| device = "cpu" # ensure determinism for the device-dependent torch.Generator | |
| components = self.get_dummy_components() | |
| pipe_pag = self.pipeline_class(**components, pag_applied_layers=["mid", "up", "down"]) | |
| pipe_pag = pipe_pag.to(device) | |
| pipe_pag.set_progress_bar_config(disable=None) | |
| inputs = self.get_dummy_inputs(device) | |
| image = pipe_pag(**inputs).images | |
| image_slice = image[0, -3:, -3:, -1] | |
| assert image.shape == ( | |
| 1, | |
| 32, | |
| 32, | |
| 3, | |
| ), f"the shape of the output image should be (1, 32, 32, 3) but got {image.shape}" | |
| expected_slice = np.array( | |
| [0.44203848, 0.49598145, 0.42248967, 0.6707724, 0.5683791, 0.43603387, 0.58316565, 0.60077155, 0.5174199] | |
| ) | |
| max_diff = np.abs(image_slice.flatten() - expected_slice).max() | |
| self.assertLessEqual(max_diff, 1e-3) | |
| def test_encode_prompt_works_in_isolation(self): | |
| extra_required_param_value_dict = { | |
| "device": torch.device(torch_device).type, | |
| "do_classifier_free_guidance": self.get_dummy_inputs(device=torch_device).get("guidance_scale", 1.0) > 1.0, | |
| } | |
| return super().test_encode_prompt_works_in_isolation(extra_required_param_value_dict) | |
| class StableDiffusionPAGImg2ImgPipelineIntegrationTests(unittest.TestCase): | |
| pipeline_class = StableDiffusionPAGImg2ImgPipeline | |
| repo_id = "Jiali/stable-diffusion-1.5" | |
| def setUp(self): | |
| super().setUp() | |
| gc.collect() | |
| backend_empty_cache(torch_device) | |
| def tearDown(self): | |
| super().tearDown() | |
| gc.collect() | |
| backend_empty_cache(torch_device) | |
| def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0): | |
| generator = torch.Generator(device=generator_device).manual_seed(seed) | |
| init_image = load_image( | |
| "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main" | |
| "/stable_diffusion_img2img/sketch-mountains-input.png" | |
| ) | |
| inputs = { | |
| "prompt": "a fantasy landscape, concept art, high resolution", | |
| "image": init_image, | |
| "generator": generator, | |
| "num_inference_steps": 3, | |
| "strength": 0.75, | |
| "guidance_scale": 7.5, | |
| "pag_scale": 3.0, | |
| "output_type": "np", | |
| } | |
| return inputs | |
| def test_pag_cfg(self): | |
| pipeline = AutoPipelineForImage2Image.from_pretrained(self.repo_id, enable_pag=True, torch_dtype=torch.float16) | |
| pipeline.enable_model_cpu_offload(device=torch_device) | |
| pipeline.set_progress_bar_config(disable=None) | |
| inputs = self.get_inputs(torch_device) | |
| image = pipeline(**inputs).images | |
| image_slice = image[0, -3:, -3:, -1].flatten() | |
| assert image.shape == (1, 512, 512, 3) | |
| expected_slice = np.array( | |
| [0.58251953, 0.5722656, 0.5683594, 0.55029297, 0.52001953, 0.52001953, 0.49951172, 0.45410156, 0.50146484] | |
| ) | |
| assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3, ( | |
| f"output is different from expected, {image_slice.flatten()}" | |
| ) | |
| def test_pag_uncond(self): | |
| pipeline = AutoPipelineForImage2Image.from_pretrained(self.repo_id, enable_pag=True, torch_dtype=torch.float16) | |
| pipeline.enable_model_cpu_offload(device=torch_device) | |
| pipeline.set_progress_bar_config(disable=None) | |
| inputs = self.get_inputs(torch_device, guidance_scale=0.0) | |
| image = pipeline(**inputs).images | |
| image_slice = image[0, -3:, -3:, -1].flatten() | |
| assert image.shape == (1, 512, 512, 3) | |
| expected_slice = np.array( | |
| [0.5986328, 0.52441406, 0.3972168, 0.4741211, 0.34985352, 0.22705078, 0.4128418, 0.2866211, 0.31713867] | |
| ) | |
| assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3, ( | |
| f"output is different from expected, {image_slice.flatten()}" | |
| ) | |