Spaces:
Runtime error
Runtime error
| # coding=utf-8 | |
| # Copyright 2024 HuggingFace Inc. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import gc | |
| import random | |
| import unittest | |
| import torch | |
| from diffusers import IFInpaintingPipeline | |
| from diffusers.models.attention_processor import AttnAddedKVProcessor | |
| from diffusers.utils.import_utils import is_xformers_available | |
| from diffusers.utils.testing_utils import ( | |
| backend_empty_cache, | |
| backend_max_memory_allocated, | |
| backend_reset_max_memory_allocated, | |
| backend_reset_peak_memory_stats, | |
| floats_tensor, | |
| load_numpy, | |
| require_accelerator, | |
| require_hf_hub_version_greater, | |
| require_torch_accelerator, | |
| require_transformers_version_greater, | |
| skip_mps, | |
| slow, | |
| torch_device, | |
| ) | |
| from ..pipeline_params import ( | |
| TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, | |
| TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, | |
| ) | |
| from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference | |
| from . import IFPipelineTesterMixin | |
| class IFInpaintingPipelineFastTests(PipelineTesterMixin, IFPipelineTesterMixin, unittest.TestCase): | |
| pipeline_class = IFInpaintingPipeline | |
| params = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"width", "height"} | |
| batch_params = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS | |
| required_optional_params = PipelineTesterMixin.required_optional_params - {"latents"} | |
| def get_dummy_components(self): | |
| return self._get_dummy_components() | |
| def get_dummy_inputs(self, device, seed=0): | |
| if str(device).startswith("mps"): | |
| generator = torch.manual_seed(seed) | |
| else: | |
| generator = torch.Generator(device=device).manual_seed(seed) | |
| image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device) | |
| mask_image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device) | |
| inputs = { | |
| "prompt": "A painting of a squirrel eating a burger", | |
| "image": image, | |
| "mask_image": mask_image, | |
| "generator": generator, | |
| "num_inference_steps": 2, | |
| "output_type": "np", | |
| } | |
| return inputs | |
| def test_xformers_attention_forwardGenerator_pass(self): | |
| self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3) | |
| def test_save_load_float16(self): | |
| # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder | |
| super().test_save_load_float16(expected_max_diff=1e-1) | |
| def test_attention_slicing_forward_pass(self): | |
| self._test_attention_slicing_forward_pass(expected_max_diff=1e-2) | |
| def test_save_load_local(self): | |
| self._test_save_load_local() | |
| def test_inference_batch_single_identical(self): | |
| self._test_inference_batch_single_identical( | |
| expected_max_diff=1e-2, | |
| ) | |
| def test_save_load_dduf(self): | |
| super().test_save_load_dduf(atol=1e-2, rtol=1e-2) | |
| def test_save_load_optional_components(self, expected_max_difference=0.0001): | |
| pass | |
| class IFInpaintingPipelineSlowTests(unittest.TestCase): | |
| def setUp(self): | |
| # clean up the VRAM before each test | |
| super().setUp() | |
| gc.collect() | |
| backend_empty_cache(torch_device) | |
| def tearDown(self): | |
| # clean up the VRAM after each test | |
| super().tearDown() | |
| gc.collect() | |
| backend_empty_cache(torch_device) | |
| def test_if_inpainting(self): | |
| pipe = IFInpaintingPipeline.from_pretrained( | |
| "DeepFloyd/IF-I-XL-v1.0", variant="fp16", torch_dtype=torch.float16 | |
| ) | |
| pipe.unet.set_attn_processor(AttnAddedKVProcessor()) | |
| pipe.enable_model_cpu_offload(device=torch_device) | |
| backend_empty_cache(torch_device) | |
| backend_reset_max_memory_allocated(torch_device) | |
| backend_reset_peak_memory_stats(torch_device) | |
| image = floats_tensor((1, 3, 64, 64), rng=random.Random(0)).to(torch_device) | |
| mask_image = floats_tensor((1, 3, 64, 64), rng=random.Random(1)).to(torch_device) | |
| generator = torch.Generator(device="cpu").manual_seed(0) | |
| output = pipe( | |
| prompt="anime prompts", | |
| image=image, | |
| mask_image=mask_image, | |
| num_inference_steps=2, | |
| generator=generator, | |
| output_type="np", | |
| ) | |
| image = output.images[0] | |
| mem_bytes = backend_max_memory_allocated(torch_device) | |
| assert mem_bytes < 12 * 10**9 | |
| expected_image = load_numpy( | |
| "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy" | |
| ) | |
| assert_mean_pixel_difference(image, expected_image) | |
| pipe.remove_all_hooks() | |