Spaces:
Runtime error
Runtime error
Cosmos-Predict2
/
diffusers_repo
/src
/diffusers
/pipelines
/kandinsky3
/pipeline_kandinsky3_img2img.py
| import inspect | |
| from typing import Callable, Dict, List, Optional, Union | |
| import PIL | |
| import PIL.Image | |
| import torch | |
| from transformers import T5EncoderModel, T5Tokenizer | |
| from ...image_processor import VaeImageProcessor | |
| from ...loaders import StableDiffusionLoraLoaderMixin | |
| from ...models import Kandinsky3UNet, VQModel | |
| from ...schedulers import DDPMScheduler | |
| from ...utils import ( | |
| deprecate, | |
| is_torch_xla_available, | |
| logging, | |
| replace_example_docstring, | |
| ) | |
| from ...utils.torch_utils import randn_tensor | |
| from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput | |
| if is_torch_xla_available(): | |
| import torch_xla.core.xla_model as xm | |
| XLA_AVAILABLE = True | |
| else: | |
| XLA_AVAILABLE = False | |
| logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
| EXAMPLE_DOC_STRING = """ | |
| Examples: | |
| ```py | |
| >>> from diffusers import AutoPipelineForImage2Image | |
| >>> from diffusers.utils import load_image | |
| >>> import torch | |
| >>> pipe = AutoPipelineForImage2Image.from_pretrained( | |
| ... "kandinsky-community/kandinsky-3", variant="fp16", torch_dtype=torch.float16 | |
| ... ) | |
| >>> pipe.enable_model_cpu_offload() | |
| >>> prompt = "A painting of the inside of a subway train with tiny raccoons." | |
| >>> image = load_image( | |
| ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/kandinsky3/t2i.png" | |
| ... ) | |
| >>> generator = torch.Generator(device="cpu").manual_seed(0) | |
| >>> image = pipe(prompt, image=image, strength=0.75, num_inference_steps=25, generator=generator).images[0] | |
| ``` | |
| """ | |
| class Kandinsky3Img2ImgPipeline(DiffusionPipeline, StableDiffusionLoraLoaderMixin): | |
| model_cpu_offload_seq = "text_encoder->movq->unet->movq" | |
| _callback_tensor_inputs = [ | |
| "latents", | |
| "prompt_embeds", | |
| "negative_prompt_embeds", | |
| "negative_attention_mask", | |
| "attention_mask", | |
| ] | |
| def __init__( | |
| self, | |
| tokenizer: T5Tokenizer, | |
| text_encoder: T5EncoderModel, | |
| unet: Kandinsky3UNet, | |
| scheduler: DDPMScheduler, | |
| movq: VQModel, | |
| ): | |
| super().__init__() | |
| self.register_modules( | |
| tokenizer=tokenizer, text_encoder=text_encoder, unet=unet, scheduler=scheduler, movq=movq | |
| ) | |
| movq_scale_factor = 2 ** (len(self.movq.config.block_out_channels) - 1) if getattr(self, "movq", None) else 8 | |
| movq_latent_channels = self.movq.config.latent_channels if getattr(self, "movq", None) else 4 | |
| self.image_processor = VaeImageProcessor( | |
| vae_scale_factor=movq_scale_factor, | |
| vae_latent_channels=movq_latent_channels, | |
| resample="bicubic", | |
| reducing_gap=1, | |
| ) | |
| def get_timesteps(self, num_inference_steps, strength, device): | |
| # get the original timestep using init_timestep | |
| init_timestep = min(int(num_inference_steps * strength), num_inference_steps) | |
| t_start = max(num_inference_steps - init_timestep, 0) | |
| timesteps = self.scheduler.timesteps[t_start:] | |
| return timesteps, num_inference_steps - t_start | |
| def _process_embeds(self, embeddings, attention_mask, cut_context): | |
| # return embeddings, attention_mask | |
| if cut_context: | |
| embeddings[attention_mask == 0] = torch.zeros_like(embeddings[attention_mask == 0]) | |
| max_seq_length = attention_mask.sum(-1).max() + 1 | |
| embeddings = embeddings[:, :max_seq_length] | |
| attention_mask = attention_mask[:, :max_seq_length] | |
| return embeddings, attention_mask | |
| def encode_prompt( | |
| self, | |
| prompt, | |
| do_classifier_free_guidance=True, | |
| num_images_per_prompt=1, | |
| device=None, | |
| negative_prompt=None, | |
| prompt_embeds: Optional[torch.Tensor] = None, | |
| negative_prompt_embeds: Optional[torch.Tensor] = None, | |
| _cut_context=False, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| negative_attention_mask: Optional[torch.Tensor] = None, | |
| ): | |
| r""" | |
| Encodes the prompt into text encoder hidden states. | |
| Args: | |
| prompt (`str` or `List[str]`, *optional*): | |
| prompt to be encoded | |
| device: (`torch.device`, *optional*): | |
| torch device to place the resulting embeddings on | |
| num_images_per_prompt (`int`, *optional*, defaults to 1): | |
| number of images that should be generated per prompt | |
| do_classifier_free_guidance (`bool`, *optional*, defaults to `True`): | |
| whether to use classifier free guidance or not | |
| negative_prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts not to guide the image generation. If not defined, one has to pass | |
| `negative_prompt_embeds`. instead. If not defined, one has to pass `negative_prompt_embeds`. instead. | |
| Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). | |
| prompt_embeds (`torch.Tensor`, *optional*): | |
| Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
| provided, text embeddings will be generated from `prompt` input argument. | |
| negative_prompt_embeds (`torch.Tensor`, *optional*): | |
| Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
| weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | |
| argument. | |
| attention_mask (`torch.Tensor`, *optional*): | |
| Pre-generated attention mask. Must provide if passing `prompt_embeds` directly. | |
| negative_attention_mask (`torch.Tensor`, *optional*): | |
| Pre-generated negative attention mask. Must provide if passing `negative_prompt_embeds` directly. | |
| """ | |
| if prompt is not None and negative_prompt is not None: | |
| if type(prompt) is not type(negative_prompt): | |
| raise TypeError( | |
| f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" | |
| f" {type(prompt)}." | |
| ) | |
| if device is None: | |
| device = self._execution_device | |
| if prompt is not None and isinstance(prompt, str): | |
| batch_size = 1 | |
| elif prompt is not None and isinstance(prompt, list): | |
| batch_size = len(prompt) | |
| else: | |
| batch_size = prompt_embeds.shape[0] | |
| max_length = 128 | |
| if prompt_embeds is None: | |
| text_inputs = self.tokenizer( | |
| prompt, | |
| padding="max_length", | |
| max_length=max_length, | |
| truncation=True, | |
| return_tensors="pt", | |
| ) | |
| text_input_ids = text_inputs.input_ids.to(device) | |
| attention_mask = text_inputs.attention_mask.to(device) | |
| prompt_embeds = self.text_encoder( | |
| text_input_ids, | |
| attention_mask=attention_mask, | |
| ) | |
| prompt_embeds = prompt_embeds[0] | |
| prompt_embeds, attention_mask = self._process_embeds(prompt_embeds, attention_mask, _cut_context) | |
| prompt_embeds = prompt_embeds * attention_mask.unsqueeze(2) | |
| if self.text_encoder is not None: | |
| dtype = self.text_encoder.dtype | |
| else: | |
| dtype = None | |
| prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) | |
| bs_embed, seq_len, _ = prompt_embeds.shape | |
| # duplicate text embeddings for each generation per prompt, using mps friendly method | |
| prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
| prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) | |
| attention_mask = attention_mask.repeat(num_images_per_prompt, 1) | |
| # get unconditional embeddings for classifier free guidance | |
| if do_classifier_free_guidance and negative_prompt_embeds is None: | |
| uncond_tokens: List[str] | |
| if negative_prompt is None: | |
| uncond_tokens = [""] * batch_size | |
| elif isinstance(negative_prompt, str): | |
| uncond_tokens = [negative_prompt] | |
| elif batch_size != len(negative_prompt): | |
| raise ValueError( | |
| f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" | |
| f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" | |
| " the batch size of `prompt`." | |
| ) | |
| else: | |
| uncond_tokens = negative_prompt | |
| if negative_prompt is not None: | |
| uncond_input = self.tokenizer( | |
| uncond_tokens, | |
| padding="max_length", | |
| max_length=128, | |
| truncation=True, | |
| return_attention_mask=True, | |
| return_tensors="pt", | |
| ) | |
| text_input_ids = uncond_input.input_ids.to(device) | |
| negative_attention_mask = uncond_input.attention_mask.to(device) | |
| negative_prompt_embeds = self.text_encoder( | |
| text_input_ids, | |
| attention_mask=negative_attention_mask, | |
| ) | |
| negative_prompt_embeds = negative_prompt_embeds[0] | |
| negative_prompt_embeds = negative_prompt_embeds[:, : prompt_embeds.shape[1]] | |
| negative_attention_mask = negative_attention_mask[:, : prompt_embeds.shape[1]] | |
| negative_prompt_embeds = negative_prompt_embeds * negative_attention_mask.unsqueeze(2) | |
| else: | |
| negative_prompt_embeds = torch.zeros_like(prompt_embeds) | |
| negative_attention_mask = torch.zeros_like(attention_mask) | |
| if do_classifier_free_guidance: | |
| # duplicate unconditional embeddings for each generation per prompt, using mps friendly method | |
| seq_len = negative_prompt_embeds.shape[1] | |
| negative_prompt_embeds = negative_prompt_embeds.to(dtype=dtype, device=device) | |
| if negative_prompt_embeds.shape != prompt_embeds.shape: | |
| negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
| negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) | |
| negative_attention_mask = negative_attention_mask.repeat(num_images_per_prompt, 1) | |
| # For classifier free guidance, we need to do two forward passes. | |
| # Here we concatenate the unconditional and text embeddings into a single batch | |
| # to avoid doing two forward passes | |
| else: | |
| negative_prompt_embeds = None | |
| negative_attention_mask = None | |
| return prompt_embeds, negative_prompt_embeds, attention_mask, negative_attention_mask | |
| def prepare_latents(self, image, timestep, batch_size, num_images_per_prompt, dtype, device, generator=None): | |
| if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)): | |
| raise ValueError( | |
| f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}" | |
| ) | |
| image = image.to(device=device, dtype=dtype) | |
| batch_size = batch_size * num_images_per_prompt | |
| if image.shape[1] == 4: | |
| init_latents = image | |
| else: | |
| if isinstance(generator, list) and len(generator) != batch_size: | |
| raise ValueError( | |
| f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
| f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
| ) | |
| elif isinstance(generator, list): | |
| init_latents = [ | |
| self.movq.encode(image[i : i + 1]).latent_dist.sample(generator[i]) for i in range(batch_size) | |
| ] | |
| init_latents = torch.cat(init_latents, dim=0) | |
| else: | |
| init_latents = self.movq.encode(image).latent_dist.sample(generator) | |
| init_latents = self.movq.config.scaling_factor * init_latents | |
| init_latents = torch.cat([init_latents], dim=0) | |
| shape = init_latents.shape | |
| noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | |
| # get latents | |
| init_latents = self.scheduler.add_noise(init_latents, noise, timestep) | |
| latents = init_latents | |
| return latents | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs | |
| def prepare_extra_step_kwargs(self, generator, eta): | |
| # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature | |
| # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. | |
| # eta corresponds to η in DDIM paper: https://huggingface.co/papers/2010.02502 | |
| # and should be between [0, 1] | |
| accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
| extra_step_kwargs = {} | |
| if accepts_eta: | |
| extra_step_kwargs["eta"] = eta | |
| # check if the scheduler accepts generator | |
| accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
| if accepts_generator: | |
| extra_step_kwargs["generator"] = generator | |
| return extra_step_kwargs | |
| def check_inputs( | |
| self, | |
| prompt, | |
| callback_steps, | |
| negative_prompt=None, | |
| prompt_embeds=None, | |
| negative_prompt_embeds=None, | |
| callback_on_step_end_tensor_inputs=None, | |
| attention_mask=None, | |
| negative_attention_mask=None, | |
| ): | |
| if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0): | |
| raise ValueError( | |
| f"`callback_steps` has to be a positive integer but is {callback_steps} of type" | |
| f" {type(callback_steps)}." | |
| ) | |
| if callback_on_step_end_tensor_inputs is not None and not all( | |
| k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs | |
| ): | |
| raise ValueError( | |
| f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" | |
| ) | |
| if prompt is not None and prompt_embeds is not None: | |
| raise ValueError( | |
| f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" | |
| " only forward one of the two." | |
| ) | |
| elif prompt is None and prompt_embeds is None: | |
| raise ValueError( | |
| "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." | |
| ) | |
| elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): | |
| raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | |
| if negative_prompt is not None and negative_prompt_embeds is not None: | |
| raise ValueError( | |
| f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" | |
| f" {negative_prompt_embeds}. Please make sure to only forward one of the two." | |
| ) | |
| if prompt_embeds is not None and negative_prompt_embeds is not None: | |
| if prompt_embeds.shape != negative_prompt_embeds.shape: | |
| raise ValueError( | |
| "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" | |
| f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" | |
| f" {negative_prompt_embeds.shape}." | |
| ) | |
| if negative_prompt_embeds is not None and negative_attention_mask is None: | |
| raise ValueError("Please provide `negative_attention_mask` along with `negative_prompt_embeds`") | |
| if negative_prompt_embeds is not None and negative_attention_mask is not None: | |
| if negative_prompt_embeds.shape[:2] != negative_attention_mask.shape: | |
| raise ValueError( | |
| "`negative_prompt_embeds` and `negative_attention_mask` must have the same batch_size and token length when passed directly, but" | |
| f" got: `negative_prompt_embeds` {negative_prompt_embeds.shape[:2]} != `negative_attention_mask`" | |
| f" {negative_attention_mask.shape}." | |
| ) | |
| if prompt_embeds is not None and attention_mask is None: | |
| raise ValueError("Please provide `attention_mask` along with `prompt_embeds`") | |
| if prompt_embeds is not None and attention_mask is not None: | |
| if prompt_embeds.shape[:2] != attention_mask.shape: | |
| raise ValueError( | |
| "`prompt_embeds` and `attention_mask` must have the same batch_size and token length when passed directly, but" | |
| f" got: `prompt_embeds` {prompt_embeds.shape[:2]} != `attention_mask`" | |
| f" {attention_mask.shape}." | |
| ) | |
| def guidance_scale(self): | |
| return self._guidance_scale | |
| def do_classifier_free_guidance(self): | |
| return self._guidance_scale > 1 | |
| def num_timesteps(self): | |
| return self._num_timesteps | |
| def __call__( | |
| self, | |
| prompt: Union[str, List[str]] = None, | |
| image: Union[torch.Tensor, PIL.Image.Image, List[torch.Tensor], List[PIL.Image.Image]] = None, | |
| strength: float = 0.3, | |
| num_inference_steps: int = 25, | |
| guidance_scale: float = 3.0, | |
| negative_prompt: Optional[Union[str, List[str]]] = None, | |
| num_images_per_prompt: Optional[int] = 1, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| prompt_embeds: Optional[torch.Tensor] = None, | |
| negative_prompt_embeds: Optional[torch.Tensor] = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| negative_attention_mask: Optional[torch.Tensor] = None, | |
| output_type: Optional[str] = "pil", | |
| return_dict: bool = True, | |
| callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, | |
| callback_on_step_end_tensor_inputs: List[str] = ["latents"], | |
| **kwargs, | |
| ): | |
| """ | |
| Function invoked when calling the pipeline for generation. | |
| Args: | |
| prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. | |
| instead. | |
| image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`): | |
| `Image`, or tensor representing an image batch, that will be used as the starting point for the | |
| process. | |
| strength (`float`, *optional*, defaults to 0.8): | |
| Indicates extent to transform the reference `image`. Must be between 0 and 1. `image` is used as a | |
| starting point and more noise is added the higher the `strength`. The number of denoising steps depends | |
| on the amount of noise initially added. When `strength` is 1, added noise is maximum and the denoising | |
| process runs for the full number of iterations specified in `num_inference_steps`. A value of 1 | |
| essentially ignores `image`. | |
| num_inference_steps (`int`, *optional*, defaults to 50): | |
| The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
| expense of slower inference. | |
| guidance_scale (`float`, *optional*, defaults to 3.0): | |
| Guidance scale as defined in [Classifier-Free Diffusion | |
| Guidance](https://huggingface.co/papers/2207.12598). `guidance_scale` is defined as `w` of equation 2. | |
| of [Imagen Paper](https://huggingface.co/papers/2205.11487). Guidance scale is enabled by setting | |
| `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to | |
| the text `prompt`, usually at the expense of lower image quality. | |
| negative_prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts not to guide the image generation. If not defined, one has to pass | |
| `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is | |
| less than `1`). | |
| num_images_per_prompt (`int`, *optional*, defaults to 1): | |
| The number of images to generate per prompt. | |
| generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
| One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) | |
| to make generation deterministic. | |
| prompt_embeds (`torch.Tensor`, *optional*): | |
| Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
| provided, text embeddings will be generated from `prompt` input argument. | |
| negative_prompt_embeds (`torch.Tensor`, *optional*): | |
| Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
| weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | |
| argument. | |
| attention_mask (`torch.Tensor`, *optional*): | |
| Pre-generated attention mask. Must provide if passing `prompt_embeds` directly. | |
| negative_attention_mask (`torch.Tensor`, *optional*): | |
| Pre-generated negative attention mask. Must provide if passing `negative_prompt_embeds` directly. | |
| output_type (`str`, *optional*, defaults to `"pil"`): | |
| The output format of the generate image. Choose between | |
| [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether or not to return a [`~pipelines.stable_diffusion.IFPipelineOutput`] instead of a plain tuple. | |
| callback_on_step_end (`Callable`, *optional*): | |
| A function that calls at the end of each denoising steps during the inference. The function is called | |
| with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, | |
| callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by | |
| `callback_on_step_end_tensor_inputs`. | |
| callback_on_step_end_tensor_inputs (`List`, *optional*): | |
| The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list | |
| will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the | |
| `._callback_tensor_inputs` attribute of your pipeline class. | |
| Examples: | |
| Returns: | |
| [`~pipelines.ImagePipelineOutput`] or `tuple` | |
| """ | |
| callback = kwargs.pop("callback", None) | |
| callback_steps = kwargs.pop("callback_steps", None) | |
| if callback is not None: | |
| deprecate( | |
| "callback", | |
| "1.0.0", | |
| "Passing `callback` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`", | |
| ) | |
| if callback_steps is not None: | |
| deprecate( | |
| "callback_steps", | |
| "1.0.0", | |
| "Passing `callback_steps` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`", | |
| ) | |
| if callback_on_step_end_tensor_inputs is not None and not all( | |
| k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs | |
| ): | |
| raise ValueError( | |
| f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" | |
| ) | |
| cut_context = True | |
| # 1. Check inputs. Raise error if not correct | |
| self.check_inputs( | |
| prompt, | |
| callback_steps, | |
| negative_prompt, | |
| prompt_embeds, | |
| negative_prompt_embeds, | |
| callback_on_step_end_tensor_inputs, | |
| attention_mask, | |
| negative_attention_mask, | |
| ) | |
| self._guidance_scale = guidance_scale | |
| if prompt is not None and isinstance(prompt, str): | |
| batch_size = 1 | |
| elif prompt is not None and isinstance(prompt, list): | |
| batch_size = len(prompt) | |
| else: | |
| batch_size = prompt_embeds.shape[0] | |
| device = self._execution_device | |
| # 3. Encode input prompt | |
| prompt_embeds, negative_prompt_embeds, attention_mask, negative_attention_mask = self.encode_prompt( | |
| prompt, | |
| self.do_classifier_free_guidance, | |
| num_images_per_prompt=num_images_per_prompt, | |
| device=device, | |
| negative_prompt=negative_prompt, | |
| prompt_embeds=prompt_embeds, | |
| negative_prompt_embeds=negative_prompt_embeds, | |
| _cut_context=cut_context, | |
| attention_mask=attention_mask, | |
| negative_attention_mask=negative_attention_mask, | |
| ) | |
| if self.do_classifier_free_guidance: | |
| prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) | |
| attention_mask = torch.cat([negative_attention_mask, attention_mask]).bool() | |
| if not isinstance(image, list): | |
| image = [image] | |
| if not all(isinstance(i, (PIL.Image.Image, torch.Tensor)) for i in image): | |
| raise ValueError( | |
| f"Input is in incorrect format: {[type(i) for i in image]}. Currently, we only support PIL image and pytorch tensor" | |
| ) | |
| image = torch.cat([self.image_processor.preprocess(i) for i in image], dim=0) | |
| image = image.to(dtype=prompt_embeds.dtype, device=device) | |
| # 4. Prepare timesteps | |
| self.scheduler.set_timesteps(num_inference_steps, device=device) | |
| timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device) | |
| # 5. Prepare latents | |
| latents = self.movq.encode(image)["latents"] | |
| latents = latents.repeat_interleave(num_images_per_prompt, dim=0) | |
| latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt) | |
| latents = self.prepare_latents( | |
| latents, latent_timestep, batch_size, num_images_per_prompt, prompt_embeds.dtype, device, generator | |
| ) | |
| if hasattr(self, "text_encoder_offload_hook") and self.text_encoder_offload_hook is not None: | |
| self.text_encoder_offload_hook.offload() | |
| # 7. Denoising loop | |
| num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order | |
| self._num_timesteps = len(timesteps) | |
| with self.progress_bar(total=num_inference_steps) as progress_bar: | |
| for i, t in enumerate(timesteps): | |
| latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents | |
| # predict the noise residual | |
| noise_pred = self.unet( | |
| latent_model_input, | |
| t, | |
| encoder_hidden_states=prompt_embeds, | |
| encoder_attention_mask=attention_mask, | |
| )[0] | |
| if self.do_classifier_free_guidance: | |
| noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
| noise_pred = (guidance_scale + 1.0) * noise_pred_text - guidance_scale * noise_pred_uncond | |
| # compute the previous noisy sample x_t -> x_t-1 | |
| latents = self.scheduler.step( | |
| noise_pred, | |
| t, | |
| latents, | |
| generator=generator, | |
| ).prev_sample | |
| if callback_on_step_end is not None: | |
| callback_kwargs = {} | |
| for k in callback_on_step_end_tensor_inputs: | |
| callback_kwargs[k] = locals()[k] | |
| callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) | |
| latents = callback_outputs.pop("latents", latents) | |
| prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) | |
| negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) | |
| attention_mask = callback_outputs.pop("attention_mask", attention_mask) | |
| negative_attention_mask = callback_outputs.pop("negative_attention_mask", negative_attention_mask) | |
| if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
| progress_bar.update() | |
| if callback is not None and i % callback_steps == 0: | |
| step_idx = i // getattr(self.scheduler, "order", 1) | |
| callback(step_idx, t, latents) | |
| if XLA_AVAILABLE: | |
| xm.mark_step() | |
| # post-processing | |
| if not output_type == "latent": | |
| image = self.movq.decode(latents, force_not_quantize=True)["sample"] | |
| image = self.image_processor.postprocess(image, output_type) | |
| else: | |
| image = latents | |
| self.maybe_free_model_hooks() | |
| if not return_dict: | |
| return (image,) | |
| return ImagePipelineOutput(images=image) | |