Spaces:
Runtime error
Runtime error
| # Copyright 2024 The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| # | |
| # Note: | |
| # This pipeline relies on a "hack" discovered by the community that allows | |
| # the generation of videos given an input image with AnimateDiff. It works | |
| # by creating a copy of the image `num_frames` times and progressively adding | |
| # more noise to the image based on the strength and latent interpolation method. | |
| import inspect | |
| from types import FunctionType | |
| from typing import Any, Callable, Dict, List, Optional, Union | |
| import numpy as np | |
| import torch | |
| from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection | |
| from diffusers.image_processor import PipelineImageInput, VaeImageProcessor | |
| from diffusers.loaders import IPAdapterMixin, StableDiffusionLoraLoaderMixin, TextualInversionLoaderMixin | |
| from diffusers.models import AutoencoderKL, ImageProjection, UNet2DConditionModel, UNetMotionModel | |
| from diffusers.models.lora import adjust_lora_scale_text_encoder | |
| from diffusers.models.unet_motion_model import MotionAdapter | |
| from diffusers.pipelines.animatediff.pipeline_output import AnimateDiffPipelineOutput | |
| from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin | |
| from diffusers.schedulers import ( | |
| DDIMScheduler, | |
| DPMSolverMultistepScheduler, | |
| EulerAncestralDiscreteScheduler, | |
| EulerDiscreteScheduler, | |
| LMSDiscreteScheduler, | |
| PNDMScheduler, | |
| ) | |
| from diffusers.utils import USE_PEFT_BACKEND, logging, scale_lora_layers, unscale_lora_layers | |
| from diffusers.utils.torch_utils import randn_tensor | |
| logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
| EXAMPLE_DOC_STRING = """ | |
| Examples: | |
| ```py | |
| >>> import torch | |
| >>> from diffusers import MotionAdapter, DiffusionPipeline, DDIMScheduler | |
| >>> from diffusers.utils import export_to_gif, load_image | |
| >>> model_id = "SG161222/Realistic_Vision_V5.1_noVAE" | |
| >>> adapter = MotionAdapter.from_pretrained("guoyww/animatediff-motion-adapter-v1-5-2") | |
| >>> pipe = DiffusionPipeline.from_pretrained("SG161222/Realistic_Vision_V5.1_noVAE", motion_adapter=adapter, custom_pipeline="pipeline_animatediff_img2video").to("cuda") | |
| >>> pipe.scheduler = pipe.scheduler = DDIMScheduler.from_pretrained(model_id, subfolder="scheduler", clip_sample=False, timestep_spacing="linspace", beta_schedule="linear", steps_offset=1) | |
| >>> image = load_image("snail.png") | |
| >>> output = pipe(image=image, prompt="A snail moving on the ground", strength=0.8, latent_interpolation_method="slerp") | |
| >>> frames = output.frames[0] | |
| >>> export_to_gif(frames, "animation.gif") | |
| ``` | |
| """ | |
| def lerp( | |
| v0: torch.Tensor, | |
| v1: torch.Tensor, | |
| t: Union[float, torch.Tensor], | |
| ) -> torch.Tensor: | |
| r""" | |
| Linear Interpolation between two tensors. | |
| Args: | |
| v0 (`torch.Tensor`): First tensor. | |
| v1 (`torch.Tensor`): Second tensor. | |
| t: (`float` or `torch.Tensor`): Interpolation factor. | |
| """ | |
| t_is_float = False | |
| input_device = v0.device | |
| v0 = v0.cpu().numpy() | |
| v1 = v1.cpu().numpy() | |
| if isinstance(t, torch.Tensor): | |
| t = t.cpu().numpy() | |
| else: | |
| t_is_float = True | |
| t = np.array([t], dtype=v0.dtype) | |
| t = t[..., None] | |
| v0 = v0[None, ...] | |
| v1 = v1[None, ...] | |
| v2 = (1 - t) * v0 + t * v1 | |
| if t_is_float and v0.ndim > 1: | |
| assert v2.shape[0] == 1 | |
| v2 = np.squeeze(v2, axis=0) | |
| v2 = torch.from_numpy(v2).to(input_device) | |
| return v2 | |
| def slerp( | |
| v0: torch.Tensor, | |
| v1: torch.Tensor, | |
| t: Union[float, torch.Tensor], | |
| DOT_THRESHOLD: float = 0.9995, | |
| ) -> torch.Tensor: | |
| r""" | |
| Spherical Linear Interpolation between two tensors. | |
| Args: | |
| v0 (`torch.Tensor`): First tensor. | |
| v1 (`torch.Tensor`): Second tensor. | |
| t: (`float` or `torch.Tensor`): Interpolation factor. | |
| DOT_THRESHOLD (`float`): | |
| Dot product threshold exceeding which linear interpolation will be used | |
| because input tensors are close to parallel. | |
| """ | |
| t_is_float = False | |
| input_device = v0.device | |
| v0 = v0.cpu().numpy() | |
| v1 = v1.cpu().numpy() | |
| if isinstance(t, torch.Tensor): | |
| t = t.cpu().numpy() | |
| else: | |
| t_is_float = True | |
| t = np.array([t], dtype=v0.dtype) | |
| dot = np.sum(v0 * v1 / (np.linalg.norm(v0) * np.linalg.norm(v1))) | |
| if np.abs(dot) > DOT_THRESHOLD: | |
| # v0 and v1 are close to parallel, so use linear interpolation instead | |
| v2 = lerp(v0, v1, t) | |
| else: | |
| theta_0 = np.arccos(dot) | |
| sin_theta_0 = np.sin(theta_0) | |
| theta_t = theta_0 * t | |
| sin_theta_t = np.sin(theta_t) | |
| s0 = np.sin(theta_0 - theta_t) / sin_theta_0 | |
| s1 = sin_theta_t / sin_theta_0 | |
| s0 = s0[..., None] | |
| s1 = s1[..., None] | |
| v0 = v0[None, ...] | |
| v1 = v1[None, ...] | |
| v2 = s0 * v0 + s1 * v1 | |
| if t_is_float and v0.ndim > 1: | |
| assert v2.shape[0] == 1 | |
| v2 = np.squeeze(v2, axis=0) | |
| v2 = torch.from_numpy(v2).to(input_device) | |
| return v2 | |
| # Copied from diffusers.pipelines.animatediff.pipeline_animatediff.tensor2vid | |
| def tensor2vid(video: torch.Tensor, processor, output_type="np"): | |
| batch_size, channels, num_frames, height, width = video.shape | |
| outputs = [] | |
| for batch_idx in range(batch_size): | |
| batch_vid = video[batch_idx].permute(1, 0, 2, 3) | |
| batch_output = processor.postprocess(batch_vid, output_type) | |
| outputs.append(batch_output) | |
| if output_type == "np": | |
| outputs = np.stack(outputs) | |
| elif output_type == "pt": | |
| outputs = torch.stack(outputs) | |
| elif not output_type == "pil": | |
| raise ValueError(f"{output_type} does not exist. Please choose one of ['np', 'pt', 'pil']") | |
| return outputs | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents | |
| def retrieve_latents( | |
| encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample" | |
| ): | |
| if hasattr(encoder_output, "latent_dist") and sample_mode == "sample": | |
| return encoder_output.latent_dist.sample(generator) | |
| elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax": | |
| return encoder_output.latent_dist.mode() | |
| elif hasattr(encoder_output, "latents"): | |
| return encoder_output.latents | |
| else: | |
| raise AttributeError("Could not access latents of provided encoder_output") | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps | |
| def retrieve_timesteps( | |
| scheduler, | |
| num_inference_steps: Optional[int] = None, | |
| device: Optional[Union[str, torch.device]] = None, | |
| timesteps: Optional[List[int]] = None, | |
| **kwargs, | |
| ): | |
| """ | |
| Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles | |
| custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`. | |
| Args: | |
| scheduler (`SchedulerMixin`): | |
| The scheduler to get timesteps from. | |
| num_inference_steps (`int`): | |
| The number of diffusion steps used when generating samples with a pre-trained model. If used, | |
| `timesteps` must be `None`. | |
| device (`str` or `torch.device`, *optional*): | |
| The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. | |
| timesteps (`List[int]`, *optional*): | |
| Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default | |
| timestep spacing strategy of the scheduler is used. If `timesteps` is passed, `num_inference_steps` | |
| must be `None`. | |
| Returns: | |
| `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the | |
| second element is the number of inference steps. | |
| """ | |
| if timesteps is not None: | |
| accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) | |
| if not accepts_timesteps: | |
| raise ValueError( | |
| f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" | |
| f" timestep schedules. Please check whether you are using the correct scheduler." | |
| ) | |
| scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) | |
| timesteps = scheduler.timesteps | |
| num_inference_steps = len(timesteps) | |
| else: | |
| scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) | |
| timesteps = scheduler.timesteps | |
| return timesteps, num_inference_steps | |
| class AnimateDiffImgToVideoPipeline( | |
| DiffusionPipeline, | |
| StableDiffusionMixin, | |
| TextualInversionLoaderMixin, | |
| IPAdapterMixin, | |
| StableDiffusionLoraLoaderMixin, | |
| ): | |
| r""" | |
| Pipeline for image-to-video generation. | |
| This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods | |
| implemented for all pipelines (downloading, saving, running on a particular device, etc.). | |
| The pipeline also inherits the following loading methods: | |
| - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings | |
| - [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for loading LoRA weights | |
| - [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for saving LoRA weights | |
| - [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters | |
| Args: | |
| vae ([`AutoencoderKL`]): | |
| Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. | |
| text_encoder ([`CLIPTextModel`]): | |
| Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)). | |
| tokenizer (`CLIPTokenizer`): | |
| A [`~transformers.CLIPTokenizer`] to tokenize text. | |
| unet ([`UNet2DConditionModel`]): | |
| A [`UNet2DConditionModel`] used to create a UNetMotionModel to denoise the encoded video latents. | |
| motion_adapter ([`MotionAdapter`]): | |
| A [`MotionAdapter`] to be used in combination with `unet` to denoise the encoded video latents. | |
| scheduler ([`SchedulerMixin`]): | |
| A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of | |
| [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. | |
| """ | |
| model_cpu_offload_seq = "text_encoder->image_encoder->unet->vae" | |
| _optional_components = ["feature_extractor", "image_encoder"] | |
| def __init__( | |
| self, | |
| vae: AutoencoderKL, | |
| text_encoder: CLIPTextModel, | |
| tokenizer: CLIPTokenizer, | |
| unet: UNet2DConditionModel, | |
| motion_adapter: MotionAdapter, | |
| scheduler: Union[ | |
| DDIMScheduler, | |
| PNDMScheduler, | |
| LMSDiscreteScheduler, | |
| EulerDiscreteScheduler, | |
| EulerAncestralDiscreteScheduler, | |
| DPMSolverMultistepScheduler, | |
| ], | |
| feature_extractor: CLIPImageProcessor = None, | |
| image_encoder: CLIPVisionModelWithProjection = None, | |
| ): | |
| super().__init__() | |
| unet = UNetMotionModel.from_unet2d(unet, motion_adapter) | |
| self.register_modules( | |
| vae=vae, | |
| text_encoder=text_encoder, | |
| tokenizer=tokenizer, | |
| unet=unet, | |
| motion_adapter=motion_adapter, | |
| scheduler=scheduler, | |
| feature_extractor=feature_extractor, | |
| image_encoder=image_encoder, | |
| ) | |
| self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8 | |
| self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_prompt with num_images_per_prompt -> num_videos_per_prompt | |
| def encode_prompt( | |
| self, | |
| prompt, | |
| device, | |
| num_images_per_prompt, | |
| do_classifier_free_guidance, | |
| negative_prompt=None, | |
| prompt_embeds: Optional[torch.Tensor] = None, | |
| negative_prompt_embeds: Optional[torch.Tensor] = None, | |
| lora_scale: Optional[float] = None, | |
| clip_skip: Optional[int] = None, | |
| ): | |
| r""" | |
| Encodes the prompt into text encoder hidden states. | |
| Args: | |
| prompt (`str` or `List[str]`, *optional*): | |
| prompt to be encoded | |
| device: (`torch.device`): | |
| torch device | |
| num_images_per_prompt (`int`): | |
| number of images that should be generated per prompt | |
| do_classifier_free_guidance (`bool`): | |
| whether to use classifier free guidance or not | |
| negative_prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts not to guide the image generation. If not defined, one has to pass | |
| `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is | |
| less than `1`). | |
| prompt_embeds (`torch.Tensor`, *optional*): | |
| Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
| provided, text embeddings will be generated from `prompt` input argument. | |
| negative_prompt_embeds (`torch.Tensor`, *optional*): | |
| Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
| weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | |
| argument. | |
| lora_scale (`float`, *optional*): | |
| A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. | |
| clip_skip (`int`, *optional*): | |
| Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that | |
| the output of the pre-final layer will be used for computing the prompt embeddings. | |
| """ | |
| # set lora scale so that monkey patched LoRA | |
| # function of text encoder can correctly access it | |
| if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin): | |
| self._lora_scale = lora_scale | |
| # dynamically adjust the LoRA scale | |
| if not USE_PEFT_BACKEND: | |
| adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) | |
| else: | |
| scale_lora_layers(self.text_encoder, lora_scale) | |
| if prompt is not None and isinstance(prompt, str): | |
| batch_size = 1 | |
| elif prompt is not None and isinstance(prompt, list): | |
| batch_size = len(prompt) | |
| else: | |
| batch_size = prompt_embeds.shape[0] | |
| if prompt_embeds is None: | |
| # textual inversion: procecss multi-vector tokens if necessary | |
| if isinstance(self, TextualInversionLoaderMixin): | |
| prompt = self.maybe_convert_prompt(prompt, self.tokenizer) | |
| text_inputs = self.tokenizer( | |
| prompt, | |
| padding="max_length", | |
| max_length=self.tokenizer.model_max_length, | |
| truncation=True, | |
| return_tensors="pt", | |
| ) | |
| text_input_ids = text_inputs.input_ids | |
| untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids | |
| if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( | |
| text_input_ids, untruncated_ids | |
| ): | |
| removed_text = self.tokenizer.batch_decode( | |
| untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] | |
| ) | |
| logger.warning( | |
| "The following part of your input was truncated because CLIP can only handle sequences up to" | |
| f" {self.tokenizer.model_max_length} tokens: {removed_text}" | |
| ) | |
| if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: | |
| attention_mask = text_inputs.attention_mask.to(device) | |
| else: | |
| attention_mask = None | |
| if clip_skip is None: | |
| prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask) | |
| prompt_embeds = prompt_embeds[0] | |
| else: | |
| prompt_embeds = self.text_encoder( | |
| text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True | |
| ) | |
| # Access the `hidden_states` first, that contains a tuple of | |
| # all the hidden states from the encoder layers. Then index into | |
| # the tuple to access the hidden states from the desired layer. | |
| prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)] | |
| # We also need to apply the final LayerNorm here to not mess with the | |
| # representations. The `last_hidden_states` that we typically use for | |
| # obtaining the final prompt representations passes through the LayerNorm | |
| # layer. | |
| prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds) | |
| if self.text_encoder is not None: | |
| prompt_embeds_dtype = self.text_encoder.dtype | |
| elif self.unet is not None: | |
| prompt_embeds_dtype = self.unet.dtype | |
| else: | |
| prompt_embeds_dtype = prompt_embeds.dtype | |
| prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) | |
| bs_embed, seq_len, _ = prompt_embeds.shape | |
| # duplicate text embeddings for each generation per prompt, using mps friendly method | |
| prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
| prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) | |
| # get unconditional embeddings for classifier free guidance | |
| if do_classifier_free_guidance and negative_prompt_embeds is None: | |
| uncond_tokens: List[str] | |
| if negative_prompt is None: | |
| uncond_tokens = [""] * batch_size | |
| elif prompt is not None and type(prompt) is not type(negative_prompt): | |
| raise TypeError( | |
| f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" | |
| f" {type(prompt)}." | |
| ) | |
| elif isinstance(negative_prompt, str): | |
| uncond_tokens = [negative_prompt] | |
| elif batch_size != len(negative_prompt): | |
| raise ValueError( | |
| f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" | |
| f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" | |
| " the batch size of `prompt`." | |
| ) | |
| else: | |
| uncond_tokens = negative_prompt | |
| # textual inversion: procecss multi-vector tokens if necessary | |
| if isinstance(self, TextualInversionLoaderMixin): | |
| uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer) | |
| max_length = prompt_embeds.shape[1] | |
| uncond_input = self.tokenizer( | |
| uncond_tokens, | |
| padding="max_length", | |
| max_length=max_length, | |
| truncation=True, | |
| return_tensors="pt", | |
| ) | |
| if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: | |
| attention_mask = uncond_input.attention_mask.to(device) | |
| else: | |
| attention_mask = None | |
| negative_prompt_embeds = self.text_encoder( | |
| uncond_input.input_ids.to(device), | |
| attention_mask=attention_mask, | |
| ) | |
| negative_prompt_embeds = negative_prompt_embeds[0] | |
| if do_classifier_free_guidance: | |
| # duplicate unconditional embeddings for each generation per prompt, using mps friendly method | |
| seq_len = negative_prompt_embeds.shape[1] | |
| negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) | |
| negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
| negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) | |
| if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND: | |
| # Retrieve the original scale by scaling back the LoRA layers | |
| unscale_lora_layers(self.text_encoder, lora_scale) | |
| return prompt_embeds, negative_prompt_embeds | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image | |
| def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None): | |
| dtype = next(self.image_encoder.parameters()).dtype | |
| if not isinstance(image, torch.Tensor): | |
| image = self.feature_extractor(image, return_tensors="pt").pixel_values | |
| image = image.to(device=device, dtype=dtype) | |
| if output_hidden_states: | |
| image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2] | |
| image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) | |
| uncond_image_enc_hidden_states = self.image_encoder( | |
| torch.zeros_like(image), output_hidden_states=True | |
| ).hidden_states[-2] | |
| uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave( | |
| num_images_per_prompt, dim=0 | |
| ) | |
| return image_enc_hidden_states, uncond_image_enc_hidden_states | |
| else: | |
| image_embeds = self.image_encoder(image).image_embeds | |
| image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) | |
| uncond_image_embeds = torch.zeros_like(image_embeds) | |
| return image_embeds, uncond_image_embeds | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_ip_adapter_image_embeds | |
| def prepare_ip_adapter_image_embeds( | |
| self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt | |
| ): | |
| if ip_adapter_image_embeds is None: | |
| if not isinstance(ip_adapter_image, list): | |
| ip_adapter_image = [ip_adapter_image] | |
| if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers): | |
| raise ValueError( | |
| f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters." | |
| ) | |
| image_embeds = [] | |
| for single_ip_adapter_image, image_proj_layer in zip( | |
| ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers | |
| ): | |
| output_hidden_state = not isinstance(image_proj_layer, ImageProjection) | |
| single_image_embeds, single_negative_image_embeds = self.encode_image( | |
| single_ip_adapter_image, device, 1, output_hidden_state | |
| ) | |
| single_image_embeds = torch.stack([single_image_embeds] * num_images_per_prompt, dim=0) | |
| single_negative_image_embeds = torch.stack( | |
| [single_negative_image_embeds] * num_images_per_prompt, dim=0 | |
| ) | |
| if self.do_classifier_free_guidance: | |
| single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds]) | |
| single_image_embeds = single_image_embeds.to(device) | |
| image_embeds.append(single_image_embeds) | |
| else: | |
| image_embeds = ip_adapter_image_embeds | |
| return image_embeds | |
| # Copied from diffusers.pipelines.text_to_video_synthesis/pipeline_text_to_video_synth.TextToVideoSDPipeline.decode_latents | |
| def decode_latents(self, latents): | |
| latents = 1 / self.vae.config.scaling_factor * latents | |
| batch_size, channels, num_frames, height, width = latents.shape | |
| latents = latents.permute(0, 2, 1, 3, 4).reshape(batch_size * num_frames, channels, height, width) | |
| image = self.vae.decode(latents).sample | |
| video = ( | |
| image[None, :] | |
| .reshape( | |
| ( | |
| batch_size, | |
| num_frames, | |
| -1, | |
| ) | |
| + image.shape[2:] | |
| ) | |
| .permute(0, 2, 1, 3, 4) | |
| ) | |
| # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 | |
| video = video.float() | |
| return video | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs | |
| def prepare_extra_step_kwargs(self, generator, eta): | |
| # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature | |
| # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. | |
| # eta corresponds to η in DDIM paper: https://huggingface.co/papers/2010.02502 | |
| # and should be between [0, 1] | |
| accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
| extra_step_kwargs = {} | |
| if accepts_eta: | |
| extra_step_kwargs["eta"] = eta | |
| # check if the scheduler accepts generator | |
| accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
| if accepts_generator: | |
| extra_step_kwargs["generator"] = generator | |
| return extra_step_kwargs | |
| def check_inputs( | |
| self, | |
| prompt, | |
| height, | |
| width, | |
| callback_steps, | |
| negative_prompt=None, | |
| prompt_embeds=None, | |
| negative_prompt_embeds=None, | |
| callback_on_step_end_tensor_inputs=None, | |
| latent_interpolation_method=None, | |
| ): | |
| if height % 8 != 0 or width % 8 != 0: | |
| raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") | |
| if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0): | |
| raise ValueError( | |
| f"`callback_steps` has to be a positive integer but is {callback_steps} of type" | |
| f" {type(callback_steps)}." | |
| ) | |
| if callback_on_step_end_tensor_inputs is not None and not all( | |
| k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs | |
| ): | |
| raise ValueError( | |
| f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" | |
| ) | |
| if prompt is not None and prompt_embeds is not None: | |
| raise ValueError( | |
| f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" | |
| " only forward one of the two." | |
| ) | |
| elif prompt is None and prompt_embeds is None: | |
| raise ValueError( | |
| "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." | |
| ) | |
| elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): | |
| raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | |
| if negative_prompt is not None and negative_prompt_embeds is not None: | |
| raise ValueError( | |
| f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" | |
| f" {negative_prompt_embeds}. Please make sure to only forward one of the two." | |
| ) | |
| if prompt_embeds is not None and negative_prompt_embeds is not None: | |
| if prompt_embeds.shape != negative_prompt_embeds.shape: | |
| raise ValueError( | |
| "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" | |
| f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" | |
| f" {negative_prompt_embeds.shape}." | |
| ) | |
| if latent_interpolation_method is not None: | |
| if latent_interpolation_method not in ["lerp", "slerp"] and not isinstance( | |
| latent_interpolation_method, FunctionType | |
| ): | |
| raise ValueError( | |
| "`latent_interpolation_method` must be one of `lerp`, `slerp` or a Callable[[torch.Tensor, torch.Tensor, int], torch.Tensor]" | |
| ) | |
| def prepare_latents( | |
| self, | |
| image, | |
| strength, | |
| batch_size, | |
| num_channels_latents, | |
| num_frames, | |
| height, | |
| width, | |
| dtype, | |
| device, | |
| generator, | |
| latents=None, | |
| latent_interpolation_method="slerp", | |
| ): | |
| shape = ( | |
| batch_size, | |
| num_channels_latents, | |
| num_frames, | |
| height // self.vae_scale_factor, | |
| width // self.vae_scale_factor, | |
| ) | |
| if latents is None: | |
| image = image.to(device=device, dtype=dtype) | |
| if image.shape[1] == 4: | |
| latents = image | |
| else: | |
| # make sure the VAE is in float32 mode, as it overflows in float16 | |
| if self.vae.config.force_upcast: | |
| image = image.float() | |
| self.vae.to(dtype=torch.float32) | |
| if isinstance(generator, list): | |
| if len(generator) != batch_size: | |
| raise ValueError( | |
| f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
| f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
| ) | |
| init_latents = [ | |
| retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i]) | |
| for i in range(batch_size) | |
| ] | |
| init_latents = torch.cat(init_latents, dim=0) | |
| else: | |
| init_latents = retrieve_latents(self.vae.encode(image), generator=generator) | |
| if self.vae.config.force_upcast: | |
| self.vae.to(dtype) | |
| init_latents = init_latents.to(dtype) | |
| init_latents = self.vae.config.scaling_factor * init_latents | |
| latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | |
| latents = latents * self.scheduler.init_noise_sigma | |
| if latent_interpolation_method == "lerp": | |
| def latent_cls(v0, v1, index): | |
| return lerp(v0, v1, index / num_frames * (1 - strength)) | |
| elif latent_interpolation_method == "slerp": | |
| def latent_cls(v0, v1, index): | |
| return slerp(v0, v1, index / num_frames * (1 - strength)) | |
| else: | |
| latent_cls = latent_interpolation_method | |
| for i in range(num_frames): | |
| latents[:, :, i, :, :] = latent_cls(latents[:, :, i, :, :], init_latents, i) | |
| else: | |
| if shape != latents.shape: | |
| # [B, C, F, H, W] | |
| raise ValueError(f"`latents` expected to have {shape=}, but found {latents.shape=}") | |
| latents = latents.to(device, dtype=dtype) | |
| return latents | |
| def __call__( | |
| self, | |
| image: PipelineImageInput, | |
| prompt: Optional[Union[str, List[str]]] = None, | |
| height: Optional[int] = None, | |
| width: Optional[int] = None, | |
| num_frames: int = 16, | |
| num_inference_steps: int = 50, | |
| timesteps: Optional[List[int]] = None, | |
| guidance_scale: float = 7.5, | |
| strength: float = 0.8, | |
| negative_prompt: Optional[Union[str, List[str]]] = None, | |
| num_videos_per_prompt: Optional[int] = 1, | |
| eta: float = 0.0, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| latents: Optional[torch.Tensor] = None, | |
| prompt_embeds: Optional[torch.Tensor] = None, | |
| negative_prompt_embeds: Optional[torch.Tensor] = None, | |
| ip_adapter_image: Optional[PipelineImageInput] = None, | |
| ip_adapter_image_embeds: Optional[PipelineImageInput] = None, | |
| output_type: Optional[str] = "pil", | |
| return_dict: bool = True, | |
| callback: Optional[Callable[[int, int, torch.Tensor], None]] = None, | |
| callback_steps: Optional[int] = 1, | |
| cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
| clip_skip: Optional[int] = None, | |
| latent_interpolation_method: Union[str, Callable[[torch.Tensor, torch.Tensor, int], torch.Tensor]] = "slerp", | |
| ): | |
| r""" | |
| The call function to the pipeline for generation. | |
| Args: | |
| image (`PipelineImageInput`): | |
| The input image to condition the generation on. | |
| prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`. | |
| height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): | |
| The height in pixels of the generated video. | |
| width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): | |
| The width in pixels of the generated video. | |
| num_frames (`int`, *optional*, defaults to 16): | |
| The number of video frames that are generated. Defaults to 16 frames which at 8 frames per seconds | |
| amounts to 2 seconds of video. | |
| num_inference_steps (`int`, *optional*, defaults to 50): | |
| The number of denoising steps. More denoising steps usually lead to a higher quality videos at the | |
| expense of slower inference. | |
| strength (`float`, *optional*, defaults to 0.8): | |
| Higher strength leads to more differences between original image and generated video. | |
| guidance_scale (`float`, *optional*, defaults to 7.5): | |
| A higher guidance scale value encourages the model to generate images closely linked to the text | |
| `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. | |
| negative_prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts to guide what to not include in image generation. If not defined, you need to | |
| pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). | |
| eta (`float`, *optional*, defaults to 0.0): | |
| Corresponds to parameter eta (η) from the [DDIM](https://huggingface.co/papers/2010.02502) paper. Only applies | |
| to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. | |
| generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
| A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make | |
| generation deterministic. | |
| latents (`torch.Tensor`, *optional*): | |
| Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for video | |
| generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
| tensor is generated by sampling using the supplied random `generator`. Latents should be of shape | |
| `(batch_size, num_channel, num_frames, height, width)`. | |
| prompt_embeds (`torch.Tensor`, *optional*): | |
| Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not | |
| provided, text embeddings are generated from the `prompt` input argument. | |
| negative_prompt_embeds (`torch.Tensor`, *optional*): | |
| Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If | |
| not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument. | |
| ip_adapter_image: (`PipelineImageInput`, *optional*): | |
| Optional image input to work with IP Adapters. | |
| ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*): | |
| Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of IP-adapters. | |
| Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should contain the negative image embedding | |
| if `do_classifier_free_guidance` is set to `True`. | |
| If not provided, embeddings are computed from the `ip_adapter_image` input argument. | |
| output_type (`str`, *optional*, defaults to `"pil"`): | |
| The output format of the generated video. Choose between `torch.Tensor`, `PIL.Image` or | |
| `np.array`. | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether or not to return a [`AnimateDiffImgToVideoPipelineOutput`] instead | |
| of a plain tuple. | |
| callback (`Callable`, *optional*): | |
| A function that calls every `callback_steps` steps during inference. The function is called with the | |
| following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`. | |
| callback_steps (`int`, *optional*, defaults to 1): | |
| The frequency at which the `callback` function is called. If not specified, the callback is called at | |
| every step. | |
| cross_attention_kwargs (`dict`, *optional*): | |
| A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in | |
| [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). | |
| clip_skip (`int`, *optional*): | |
| Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that | |
| the output of the pre-final layer will be used for computing the prompt embeddings. | |
| latent_interpolation_method (`str` or `Callable[[torch.Tensor, torch.Tensor, int], torch.Tensor]]`, *optional*): | |
| Must be one of "lerp", "slerp" or a callable that takes in a random noisy latent, image latent and a frame index | |
| as input and returns an initial latent for sampling. | |
| Examples: | |
| Returns: | |
| [`~pipelines.animatediff.pipeline_output.AnimateDiffPipelineOutput`] or `tuple`: | |
| If `return_dict` is `True`, [`~pipelines.animatediff.pipeline_output.AnimateDiffPipelineOutput`] is | |
| returned, otherwise a `tuple` is returned where the first element is a list with the generated frames. | |
| """ | |
| # 0. Default height and width to unet | |
| height = height or self.unet.config.sample_size * self.vae_scale_factor | |
| width = width or self.unet.config.sample_size * self.vae_scale_factor | |
| num_videos_per_prompt = 1 | |
| # 1. Check inputs. Raise error if not correct | |
| self.check_inputs( | |
| prompt=prompt, | |
| height=height, | |
| width=width, | |
| callback_steps=callback_steps, | |
| negative_prompt=negative_prompt, | |
| prompt_embeds=prompt_embeds, | |
| negative_prompt_embeds=negative_prompt_embeds, | |
| latent_interpolation_method=latent_interpolation_method, | |
| ) | |
| # 2. Define call parameters | |
| if prompt is not None and isinstance(prompt, str): | |
| batch_size = 1 | |
| elif prompt is not None and isinstance(prompt, list): | |
| batch_size = len(prompt) | |
| else: | |
| batch_size = prompt_embeds.shape[0] | |
| device = self._execution_device | |
| # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
| # of the Imagen paper: https://huggingface.co/papers/2205.11487 . `guidance_scale = 1` | |
| # corresponds to doing no classifier free guidance. | |
| do_classifier_free_guidance = guidance_scale > 1.0 | |
| # 3. Encode input prompt | |
| text_encoder_lora_scale = ( | |
| cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None | |
| ) | |
| prompt_embeds, negative_prompt_embeds = self.encode_prompt( | |
| prompt, | |
| device, | |
| num_videos_per_prompt, | |
| do_classifier_free_guidance, | |
| negative_prompt, | |
| prompt_embeds=prompt_embeds, | |
| negative_prompt_embeds=negative_prompt_embeds, | |
| lora_scale=text_encoder_lora_scale, | |
| clip_skip=clip_skip, | |
| ) | |
| # For classifier free guidance, we need to do two forward passes. | |
| # Here we concatenate the unconditional and text embeddings into a single batch | |
| # to avoid doing two forward passes | |
| if do_classifier_free_guidance: | |
| prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) | |
| if ip_adapter_image is not None: | |
| image_embeds = self.prepare_ip_adapter_image_embeds( | |
| ip_adapter_image, ip_adapter_image_embeds, device, batch_size * num_videos_per_prompt | |
| ) | |
| # 4. Preprocess image | |
| image = self.image_processor.preprocess(image, height=height, width=width) | |
| # 5. Prepare timesteps | |
| timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps) | |
| # 6. Prepare latent variables | |
| num_channels_latents = self.unet.config.in_channels | |
| latents = self.prepare_latents( | |
| image=image, | |
| strength=strength, | |
| batch_size=batch_size * num_videos_per_prompt, | |
| num_channels_latents=num_channels_latents, | |
| num_frames=num_frames, | |
| height=height, | |
| width=width, | |
| dtype=prompt_embeds.dtype, | |
| device=device, | |
| generator=generator, | |
| latents=latents, | |
| latent_interpolation_method=latent_interpolation_method, | |
| ) | |
| # 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline | |
| extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
| # 8. Add image embeds for IP-Adapter | |
| added_cond_kwargs = ( | |
| {"image_embeds": image_embeds} | |
| if ip_adapter_image is not None or ip_adapter_image_embeds is not None | |
| else None | |
| ) | |
| # 9. Denoising loop | |
| num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order | |
| with self.progress_bar(total=num_inference_steps) as progress_bar: | |
| for i, t in enumerate(timesteps): | |
| # expand the latents if we are doing classifier free guidance | |
| latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents | |
| latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | |
| # predict the noise residual | |
| noise_pred = self.unet( | |
| latent_model_input, | |
| t, | |
| encoder_hidden_states=prompt_embeds, | |
| cross_attention_kwargs=cross_attention_kwargs, | |
| added_cond_kwargs=added_cond_kwargs, | |
| ).sample | |
| # perform guidance | |
| if do_classifier_free_guidance: | |
| noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
| noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
| # compute the previous noisy sample x_t -> x_t-1 | |
| latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample | |
| # call the callback, if provided | |
| if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
| progress_bar.update() | |
| if callback is not None and i % callback_steps == 0: | |
| callback(i, t, latents) | |
| if output_type == "latent": | |
| return AnimateDiffPipelineOutput(frames=latents) | |
| # 10. Post-processing | |
| if output_type == "latent": | |
| video = latents | |
| else: | |
| video_tensor = self.decode_latents(latents) | |
| video = tensor2vid(video_tensor, self.image_processor, output_type=output_type) | |
| # 11. Offload all models | |
| self.maybe_free_model_hooks() | |
| if not return_dict: | |
| return (video,) | |
| return AnimateDiffPipelineOutput(frames=video) | |