Ngaima Sandiman
Changed transformers version.
bcf10cd
from argparse import Namespace
import glob
import logging
from pathlib import Path
import os
import time
from typing import Optional, Tuple
from PIL import Image
from safetensors import safe_open
import torch
from torch import nn
import torchaudio
from src.model.modules import voicecraft
from src.model.modules.gemma import GemmaForCausalLM, KVCache
from src.model.modules.imagecraftconfig import ImageCraftConfig
from src.model.modules.imagecraftprocessor import (
ImageCraftProcessor,
)
from src.model.modules.siglip import SiglipVisionModel
from transformers import AutoTokenizer
from src.model.modules.tokenizer import (
AudioTokenizer,
TextTokenizer,
tokenize_audio,
tokenize_text,
)
from src.utils import tools
from src.utils.image_utils import is_valid_image
from src.utils.model_utils import get_config, get_model_inputs
from src.utils.util import (
replace_numbers_with_words,
sample_top_p,
save_to_buffer,
save_to_file,
split_line_to_sentences,
)
from huggingface_hub import HfApi
logger = logging.getLogger(__name__)
class ImageCraftMultiModalProjector(nn.Module):
def __init__(self, config: ImageCraftConfig):
super().__init__()
self.linear = nn.Linear(
config.vision_config.hidden_size,
config.vision_config.projection_dim,
bias=True,
)
def forward(self, image_features):
hidden_states = self.linear(image_features)
return hidden_states
class ImageCraft(nn.Module):
config_class = ImageCraftConfig
def __init__(self, config: ImageCraftConfig):
super(ImageCraft, self).__init__()
self.config = config
self.vision_tower = SiglipVisionModel(config.vision_config)
self.multi_modal_projector = ImageCraftMultiModalProjector(config)
self.vocab_size = config.text_config.vocab_size
self.language_model = GemmaForCausalLM(config.text_config)
self.pad_token_id = (
self.config.pad_token_id if self.config.pad_token_id is not None else -1
)
tokenizer = AutoTokenizer.from_pretrained(
"google/paligemma-3b-pt-224", padding_side="right"
)
assert tokenizer.padding_side == "right"
num_image_tokens = config.vision_config.num_image_tokens
image_size = config.vision_config.image_size
self.processor = ImageCraftProcessor(tokenizer, num_image_tokens, image_size)
self.text_tokenizer = None
self.voicecraft_model = None
self.audio_tokenizer = None
self.device = "cuda" if torch.cuda.is_available() else "cpu"
def tie_weights(self):
return self.language_model.tie_weights()
def forward(
self,
input_ids: torch.LongTensor = None,
pixel_values: torch.FloatTensor = None,
attention_mask: Optional[torch.Tensor] = None,
labels: Optional[torch.LongTensor] = None,
kv_cache: Optional[KVCache] = None,
) -> Tuple:
# Make sure the input is right-padded
assert torch.all(attention_mask == 1), "The input cannot be padded"
# 1. Extra the input embeddings
# shape: (Batch_Size, Seq_Len, Hidden_Size)
inputs_embeds = self.language_model.get_input_embeddings()(input_ids)
# 2. Merge text and images
# [Batch_Size, Channels, Height, Width] -> [Batch_Size, Num_Patches, Embed_Dim]
selected_image_feature = self.vision_tower(pixel_values.to(inputs_embeds.dtype))
# [Batch_Size, Num_Patches, Embed_Dim] -> [Batch_Size, Num_Patches, Hidden_Size]
image_features = self.multi_modal_projector(selected_image_feature)
# Merge the embeddings of the text tokens and the image tokens
inputs_embeds, attention_mask, position_ids = (
self._merge_input_ids_with_image_features(
image_features, inputs_embeds, input_ids, attention_mask, kv_cache
)
)
outputs = self.language_model(
attention_mask=attention_mask,
position_ids=position_ids,
inputs_embeds=inputs_embeds,
kv_cache=kv_cache,
)
return outputs
def _merge_input_ids_with_image_features(
self,
image_features: torch.Tensor,
inputs_embeds: torch.Tensor,
input_ids: torch.Tensor,
attention_mask: torch.Tensor,
kv_cache: Optional[KVCache] = None,
):
_, _, embed_dim = image_features.shape
batch_size, sequence_length = input_ids.shape
dtype, device = inputs_embeds.dtype, inputs_embeds.device
# Shape: [Batch_Size, Seq_Len, Hidden_Size]
scaled_image_features = image_features / (self.config.hidden_size**0.5)
# Combine the embeddings of the image tokens, the text tokens and mask out all the padding tokens.
final_embedding = torch.zeros(
batch_size,
sequence_length,
embed_dim,
dtype=inputs_embeds.dtype,
device=inputs_embeds.device,
)
# Shape: [Batch_Size, Seq_Len]. True for text tokens
text_mask = (input_ids != self.config.image_token_index) & (
input_ids != self.pad_token_id
)
# Shape: [Batch_Size, Seq_Len]. True for image tokens
image_mask = input_ids == self.config.image_token_index
# Shape: [Batch_Size, Seq_Len]. True for padding tokens
pad_mask = input_ids == self.pad_token_id
# We need to expand the masks to the embedding dimension otherwise we can't use them in torch.where
text_mask_expanded = text_mask.unsqueeze(-1).expand(-1, -1, embed_dim)
pad_mask_expanded = pad_mask.unsqueeze(-1).expand(-1, -1, embed_dim)
image_mask_expanded = image_mask.unsqueeze(-1).expand(-1, -1, embed_dim)
# Add the text embeddings
final_embedding = torch.where(
text_mask_expanded, inputs_embeds, final_embedding
)
# Insert image embeddings. We can't use torch.where because the sequence length of scaled_image_features is not equal to the sequence length of the final embedding
final_embedding = final_embedding.masked_scatter(
image_mask_expanded, scaled_image_features
)
# Zero out padding tokens
final_embedding = torch.where(
pad_mask_expanded, torch.zeros_like(final_embedding), final_embedding
)
#### CREATE THE ATTENTION MASK ####
dtype, device = inputs_embeds.dtype, inputs_embeds.device
min_dtype = torch.finfo(dtype).min
q_len = inputs_embeds.shape[1]
if kv_cache is None or kv_cache.num_items() == 0:
# Do not mask any token, because we're in the prefill phase
# This only works when we have no padding
causal_mask = torch.full(
(batch_size, q_len, q_len), fill_value=0, dtype=dtype, device=device
)
else:
# Since we are generating tokens, the query must be one single token
assert q_len == 1
kv_len = kv_cache.num_items() + q_len
# Also in this case we don't need to mask anything, since each query should be able to attend all previous tokens.
# This only works when we have no padding
causal_mask = torch.full(
(batch_size, q_len, kv_len), fill_value=0, dtype=dtype, device=device
)
# Add the head dimension
# [Batch_Size, Q_Len, KV_Len] -> [Batch_Size, Num_Heads_Q, Q_Len, KV_Len]
causal_mask = causal_mask.unsqueeze(1)
if kv_cache is not None and kv_cache.num_items() > 0:
# The position of the query is just the last position
position_ids = attention_mask.cumsum(-1)[:, -1]
if position_ids.dim() == 1:
position_ids = position_ids.unsqueeze(0)
else:
# Create a position_ids based on the size of the attention_mask
# For masked tokens, use the number 1 as position.
position_ids = (
(attention_mask.cumsum(-1))
.masked_fill_((attention_mask == 0), 1)
.to(device)
)
return final_embedding, causal_mask, position_ids
def _generate_caption(self, image, max_tokens=100, do_sample=False):
prompt = "caption en"
image = (
image.convert("RGB")
if is_valid_image(image)
else Image.open(image).convert("RGB")
)
inputs = get_model_inputs(
processor=self.processor, prompt=prompt, image=image, device=self.device
)
image.close()
input_ids = inputs["input_ids"]
attention_mask = inputs["attention_mask"]
pixel_values = inputs["pixel_values"]
kv_cache = KVCache()
stop_token = self.processor.tokenizer.eos_token_id
generated_tokens = []
for _ in range(max_tokens):
outputs = self(
input_ids=input_ids,
pixel_values=pixel_values,
attention_mask=attention_mask,
kv_cache=kv_cache,
)
kv_cache = outputs["kv_cache"]
next_token_logits = outputs["logits"][:, -1, :]
if do_sample:
next_token_logits = torch.softmax(
next_token_logits / self.config.temperature, dim=-1
)
next_token = sample_top_p(next_token_logits, self.config.top_p)
else:
next_token = torch.argmax(next_token_logits, dim=-1, keepdim=True)
assert next_token.size() == (1, 1)
next_token = next_token.squeeze(0)
generated_tokens.append(next_token)
if next_token.item() == stop_token:
break
input_ids = next_token.unsqueeze(-1)
attention_mask = torch.cat(
[attention_mask, torch.ones((1, 1), device=input_ids.device)], dim=-1
)
generated_tokens = torch.cat(generated_tokens, dim=-1)
decoded_text = self.processor.tokenizer.decode(
generated_tokens, skip_special_tokens=True
)
decoded_text = (
parts[1] if len(parts := decoded_text.split("\n", 1)) > 1 else decoded_text
)
return decoded_text.rstrip(" .").strip().capitalize() + "."
def _generate_speech(self, text: str, output_type="file"):
sentences = split_line_to_sentences(text)
voice_audio = (
f"media/voicecraft/voices/{self.config.voicecraft_config.voice_audio_path}"
)
voice_transcript = self.config.voicecraft_config.voice_audio_transcript
cut_off_sec = self.config.voicecraft_config.cut_off_sec
decode_config = {
"top_k": self.config.voicecraft_config.top_k,
"top_p": self.config.voicecraft_config.top_p,
"temperature": self.config.voicecraft_config.temperature,
"stop_repetition": self.config.voicecraft_config.stop_repetition,
"kvcache": self.config.voicecraft_config.kvcache,
"codec_audio_sr": self.config.voicecraft_config.codec_audio_sr,
"codec_sr": self.config.voicecraft_config.codec_sr,
"silence_tokens": self.config.voicecraft_config.silence_tokens,
"sample_batch_size": self.config.voicecraft_config.sample_batch_size,
}
info = torchaudio.info(voice_audio)
audio_dur = info.num_frames / info.sample_rate
prompt_end_frame = int(min(audio_dur, cut_off_sec) * info.sample_rate)
audio_tensors = []
transcript = voice_transcript
for sentence in sentences:
transcript += sentence + "\n"
transcript = replace_numbers_with_words(transcript).replace(" ", " ")
# phonemize
phn2num = self.voicecraft_model.args.phn2num
text_tokens = [
phn2num[phn]
for phn in tokenize_text(self.text_tokenizer, text=transcript.strip())
if phn in phn2num
]
text_tokens = torch.LongTensor(text_tokens).unsqueeze(0)
text_tokens_lens = torch.LongTensor([text_tokens.shape[-1]])
# encode audio
encoded_frames = tokenize_audio(
self.audio_tokenizer,
voice_audio,
offset=0,
num_frames=prompt_end_frame,
)
original_audio = encoded_frames[0][0].transpose(2, 1) # [1,T,K]
model_args = vars(self.voicecraft_model.args)
model_args = Namespace(**model_args)
assert (
original_audio.ndim == 3
and original_audio.shape[0] == 1
and original_audio.shape[2] == model_args.n_codebooks
), original_audio.shape
# forward
stime = time.time()
if decode_config["sample_batch_size"] <= 1:
_, gen_frames = self.voicecraft_model.inference_tts(
text_tokens.to(self.device),
text_tokens_lens.to(self.device),
original_audio[..., : model_args.n_codebooks].to(
self.device
), # [1,T,8]
top_k=decode_config["top_k"],
top_p=decode_config["top_p"],
temperature=decode_config["temperature"],
stop_repetition=decode_config["stop_repetition"],
kvcache=decode_config["kvcache"],
silence_tokens=(
eval(decode_config["silence_tokens"])
if type(decode_config["silence_tokens"]) == str
else decode_config["silence_tokens"]
),
) # output is [1,K,T]
else:
_, gen_frames = self.voicecraft_model.inference_tts_batch(
text_tokens.to(self.device),
text_tokens_lens.to(self.device),
original_audio[..., : model_args.n_codebooks].to(
self.device
), # [1,T,8]
top_k=decode_config["top_k"],
top_p=decode_config["top_p"],
temperature=decode_config["temperature"],
stop_repetition=decode_config["stop_repetition"],
kvcache=decode_config["kvcache"],
batch_size=decode_config["sample_batch_size"],
silence_tokens=(
eval(decode_config["silence_tokens"])
if type(decode_config["silence_tokens"]) == str
else decode_config["silence_tokens"]
),
) # output is [1,K,T]
gen_sample = self.audio_tokenizer.decode([(gen_frames, None)])
gen_audio = gen_sample[0].cpu()
audio_tensors.append(gen_audio)
output = None
if output_type == "file":
output = save_to_file(audio_tensors, decode_config["codec_audio_sr"])
else:
output = save_to_buffer(audio_tensors, decode_config["codec_audio_sr"])
# Empty cuda cache between runs
if torch.cuda.is_available():
torch.cuda.empty_cache()
return output
@torch.inference_mode()
def generate(
self,
image,
max_tokens=30,
do_sample=False,
output_type="file",
):
transcript = self._generate_caption(image, max_tokens, do_sample)
speech = self._generate_speech(transcript, output_type)
return transcript, speech
@classmethod
def from_pretrained(
cls,
model_path=None,
):
api = HfApi()
device = "cuda" if torch.cuda.is_available() else "cpu"
env_config = tools.load_config()
pretrained_dir = env_config["pretrained_dir"]
imagecraft_cache_dir = f"{pretrained_dir}/imagecraft"
voicecraft_cache_dir = f"{pretrained_dir}/voicecraft"
state_dict = {}
if Path(model_path).is_file():
checkpoint = torch.load(model_path, weights_only=False)
state_dict = checkpoint["state_dict"]
else:
model_path = api.snapshot_download(
repo_id=model_path,
repo_type="model",
cache_dir=imagecraft_cache_dir,
local_files_only=False,
)
safetensors_files = glob.glob(os.path.join(model_path, "*.safetensors"))
for safetensors_file in safetensors_files:
with safe_open(safetensors_file, framework="pt", device="cpu") as f:
for key in f.keys():
state_dict[key] = f.get_tensor(key)
imagecraft_config = get_config()
model = cls(imagecraft_config).to(device)
# Load the state dict of the model
model.load_state_dict(state_dict, strict=False)
# Tie weights
model.tie_weights()
model = model.eval()
# Load voicecraft module
model.voicecraft_model = voicecraft.VoiceCraft.from_pretrained(
f"pyp1/VoiceCraft_{model.config.voicecraft_config.model_name.replace('.pth', '')}",
cache_dir=voicecraft_cache_dir,
)
encodec_fn = f"{voicecraft_cache_dir}/{model.config.voicecraft_config.encodec}"
if not os.path.exists(encodec_fn):
os.system(
f"wget https://huggingface.co/pyp1/VoiceCraft/resolve/main/{model.config.voicecraft_config.encodec}"
)
os.system(f"mv {model.config.voicecraft_config.encodec} {encodec_fn}")
model.audio_tokenizer = AudioTokenizer(
signature=encodec_fn,
device=device,
)
model.text_tokenizer = TextTokenizer(backend="espeak")
model.voicecraft_model.to(device)
return model