Spaces:
Running
on
Zero
Running
on
Zero
""" | |
Copyright (c) 2023, salesforce.com, inc. | |
All rights reserved. | |
SPDX-License-Identifier: BSD-3-Clause | |
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause | |
""" | |
import logging | |
import torch | |
import torch.distributed as dist | |
import torch.nn as nn | |
from typing import Optional, Tuple, List | |
from torch.cuda.amp import autocast as autocast | |
from torch.nn import functional as F | |
from lavis.common.registry import registry | |
from lavis.models.base_model import all_gather_with_grad, concat_all_gather | |
from lavis.models.blip2_models.blip2 import ( | |
compute_sim_matrix, | |
disabled_train, | |
) | |
from lavis.models.blip_models.blip_outputs import BlipOutput | |
from transformers.modeling_outputs import ModelOutput | |
from models.q_formers.blip2 import Blip2Base | |
from models.q_formers.position_encoding import PositionEmbeddings | |
from ldm.modules.diffusionmodules.util import conv_nd | |
import time | |
class BlipOutputFeatures(ModelOutput): | |
""" | |
Data class of features from BlipFeatureExtractor. | |
Args: | |
image_embeds: (torch.FloatTensor) of shape (batch_size, num_patches+1, embed_dim), optional | |
image_features: (torch.FloatTensor) of shape (batch_size, num_patches+1, feature_dim), optional | |
text_embeds: (torch.FloatTensor) of shape (batch_size, sequence_length+1, embed_dim), optional | |
text_features: (torch.FloatTensor) of shape (batch_size, sequence_length+1, feature_dim), optional | |
The first embedding or feature is for the [CLS] token. | |
Features are obtained by projecting the corresponding embedding into a normalized low-dimensional space. | |
""" | |
image_embeds: Optional[torch.FloatTensor] = None | |
image_embeds_proj: Optional[torch.FloatTensor] = None | |
text_embeds: Optional[torch.FloatTensor] = None | |
text_embeds_proj: Optional[torch.FloatTensor] = None | |
multimodal_embeds: Optional[torch.FloatTensor] = None | |
hidden_states: List[torch.FloatTensor] = None | |
attentions: List[torch.FloatTensor] = None | |
cross_attentions: List[torch.FloatTensor] = None | |
class Blip2Qformer(Blip2Base): | |
""" | |
BLIP2 first-stage model with Q-former and ViT. | |
Supported model types: | |
- pretrained: pretrained model with vit-g | |
- pretrain_vitL: pretrained model with vit-large | |
- coco: fintuned model on coco | |
Usage: | |
>>> from lavis.models import load_model | |
>>> model = load_model("blip2", "pretrain") | |
""" | |
PRETRAINED_MODEL_CONFIG_DICT = { | |
"pretrain": "configs/models/blip2/blip2_pretrain.yaml", | |
"pretrain_vitL": "configs/models/blip2/blip2_pretrain_vitL.yaml", | |
"coco": "configs/models/blip2/blip2_coco.yaml", | |
} | |
def __init__( | |
self, | |
model_name="bert-base-uncased", | |
vit_model="eva_clip_g", | |
img_size=224, | |
drop_path_rate=0, | |
head_dropout=0, | |
use_grad_checkpoint=False, | |
vit_precision="fp16", | |
freeze_vit=True, | |
num_query_token=32, | |
cross_attention_freq=2, | |
embed_dim=256, | |
max_txt_len=32, | |
query_token_init_type='normal', | |
max_position_embeddings=512, | |
multilevels=[], | |
): | |
super().__init__() | |
self.num_query_token = num_query_token | |
self.tokenizer = self.init_tokenizer(model_name) | |
self.visual_encoder, self.ln_vision = self.init_vision_encoder( | |
vit_model, img_size, drop_path_rate, use_grad_checkpoint, vit_precision, len(multilevels), | |
) | |
self.multilevels = multilevels | |
self.crossattn_embeddings = PositionEmbeddings(max_position_embeddings, self.visual_encoder.num_features) | |
self.Qformer, self.query_tokens = self.init_Qformer( | |
num_query_token, self.visual_encoder.num_features, model_name, head_dropout, cross_attention_freq, query_token_init_type, | |
) | |
self.Qformer.resize_token_embeddings(len(self.tokenizer)) | |
state_dict = self.Qformer.state_dict() | |
for name, param in self.Qformer.named_parameters(): | |
if "_query" in name: | |
key_orig = name.replace("_query", "") | |
param.data.copy_(state_dict[key_orig]) | |
self.vision_proj = nn.Linear(self.Qformer.config.hidden_size, embed_dim) | |
self.text_proj = nn.Linear(self.Qformer.config.hidden_size, embed_dim) | |
self.itm_head = nn.Linear(self.Qformer.config.hidden_size, 2) | |
self.temp = nn.Parameter(0.07 * torch.ones([])) | |
self.max_txt_len = max_txt_len | |
self.visual_encoder.requires_grad_(False) | |
for name, param in self.Qformer.named_parameters(): | |
if 'crossattention' in name: | |
param.requires_grad = True | |
else: | |
param.requires_grad = False | |
del self.Qformer.cls | |
del self.vision_proj | |
del self.text_proj | |
del self.itm_head | |
del self.temp | |
def forward(self, samples): | |
image = samples["image"] | |
text = samples["text_input"] | |
image_embeds = self.ln_vision(self.visual_encoder(image)) | |
image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to( | |
image.device | |
) | |
query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1) | |
query_output = self.Qformer.bert( | |
query_embeds=query_tokens, | |
encoder_hidden_states=image_embeds, | |
encoder_attention_mask=image_atts, | |
use_cache=True, | |
return_dict=True, | |
) | |
image_feats = F.normalize( | |
self.vision_proj(query_output.last_hidden_state), dim=-1 | |
) | |
text_tokens = self.tokenizer( | |
text, | |
padding="max_length", | |
truncation=True, | |
max_length=self.max_txt_len, | |
return_tensors="pt", | |
).to(image.device) | |
text_output = self.Qformer.bert( | |
text_tokens.input_ids, | |
attention_mask=text_tokens.attention_mask, | |
return_dict=True, | |
) | |
text_feat = F.normalize( | |
self.text_proj(text_output.last_hidden_state[:, 0, :]), dim=-1 | |
) | |
###============== Image-text Contrastive ===================### | |
image_feats_all = concat_all_gather( | |
image_feats | |
) # [batch_size*num_gpu, num_query_tokens, embed_dim] | |
text_feat_all = concat_all_gather(text_feat) # [batch_size*num_gpu, embed_dim] | |
sim_q2t = torch.matmul( | |
image_feats.unsqueeze(1), text_feat_all.unsqueeze(-1) | |
).squeeze() | |
# [batch_size, batch_size*num_gpu, num_query_tokens] | |
# image-text similarity: aggregate across all query tokens | |
sim_i2t, _ = sim_q2t.max(-1) | |
sim_i2t = sim_i2t / self.temp | |
# text-query similarity: [batch_size, batch_size*num_gpu, num_query_tokens] | |
sim_t2q = torch.matmul( | |
text_feat.unsqueeze(1).unsqueeze(1), image_feats_all.permute(0, 2, 1) | |
).squeeze() | |
# text-image similarity: aggregate across all query tokens | |
sim_t2i, _ = sim_t2q.max(-1) | |
sim_t2i = sim_t2i / self.temp # [batch_size, batch_size*num_gpu] | |
rank = dist.get_rank() | |
bs = image.size(0) | |
targets = torch.linspace(rank * bs, rank * bs + bs - 1, bs, dtype=int).to( | |
image.device | |
) | |
if "image_id" in samples.keys(): #coco retrieval finetuning | |
image_ids = samples["image_id"].view(-1,1) | |
image_ids_all = concat_all_gather(image_ids) | |
pos_idx = torch.eq(image_ids, image_ids_all.t()).float() | |
sim_targets = pos_idx / pos_idx.sum(1,keepdim=True) | |
sim_targets = 0.9 * sim_targets + 0.1 * torch.ones_like(sim_targets) / sim_targets.size(1) | |
loss_t2i = -torch.sum(F.log_softmax(sim_t2i, dim=1)*sim_targets,dim=1).mean() | |
loss_i2t = -torch.sum(F.log_softmax(sim_i2t, dim=1)*sim_targets,dim=1).mean() | |
loss_itc = (loss_t2i+loss_i2t)/2 | |
else: | |
loss_itc = ( | |
F.cross_entropy(sim_i2t, targets, label_smoothing=0.1) | |
+ F.cross_entropy(sim_t2i, targets, label_smoothing=0.1) | |
) / 2 | |
###============== Image-text Matching ===================### | |
text_input_ids_world = concat_all_gather(text_tokens.input_ids) | |
text_attention_mask_world = concat_all_gather(text_tokens.attention_mask) | |
image_embeds_world = all_gather_with_grad(image_embeds) | |
with torch.no_grad(): | |
if "image_id" in samples.keys(): | |
mask = torch.eq(image_ids, image_ids_all.t()) | |
sim_t2i.masked_fill_(mask, -10000) | |
sim_i2t.masked_fill_(mask, -10000) | |
else: | |
sim_t2i[:, rank * bs : rank * bs + bs].fill_diagonal_(-10000) | |
sim_i2t[:, rank * bs : rank * bs + bs].fill_diagonal_(-10000) | |
weights_t2i = F.softmax(sim_t2i, dim=1) | |
weights_i2t = F.softmax(sim_i2t, dim=1) | |
# select a negative image for each text | |
image_embeds_neg = [] | |
for b in range(bs): | |
neg_idx = torch.multinomial(weights_t2i[b], 1).item() | |
image_embeds_neg.append(image_embeds_world[neg_idx]) | |
image_embeds_neg = torch.stack(image_embeds_neg, dim=0) | |
# select a negative text for each image | |
text_ids_neg = [] | |
text_atts_neg = [] | |
for b in range(bs): | |
neg_idx = torch.multinomial(weights_i2t[b], 1).item() | |
text_ids_neg.append(text_input_ids_world[neg_idx]) | |
text_atts_neg.append(text_attention_mask_world[neg_idx]) | |
text_ids_neg = torch.stack(text_ids_neg, dim=0) | |
text_atts_neg = torch.stack(text_atts_neg, dim=0) | |
text_ids_all = torch.cat( | |
[text_tokens.input_ids, text_tokens.input_ids, text_ids_neg], dim=0 | |
) # pos, pos, neg | |
text_atts_all = torch.cat( | |
[text_tokens.attention_mask, text_tokens.attention_mask, text_atts_neg], | |
dim=0, | |
) | |
query_tokens_itm = self.query_tokens.expand(text_ids_all.shape[0], -1, -1) | |
query_atts_itm = torch.ones(query_tokens_itm.size()[:-1], dtype=torch.long).to( | |
image.device | |
) | |
attention_mask_all = torch.cat([query_atts_itm, text_atts_all], dim=1) | |
image_embeds_all = torch.cat( | |
[image_embeds, image_embeds_neg, image_embeds], dim=0 | |
) # pos, neg, pos | |
image_atts_all = torch.ones(image_embeds_all.size()[:-1], dtype=torch.long).to( | |
image.device | |
) | |
output_itm = self.Qformer.bert( | |
text_ids_all, | |
query_embeds=query_tokens_itm, | |
attention_mask=attention_mask_all, | |
encoder_hidden_states=image_embeds_all, | |
encoder_attention_mask=image_atts_all, | |
return_dict=True, | |
) | |
vl_embeddings = output_itm.last_hidden_state[:, : query_tokens_itm.size(1), :] | |
vl_output = self.itm_head(vl_embeddings) | |
logits = vl_output.mean(dim=1) | |
itm_labels = torch.cat( | |
[torch.ones(bs, dtype=torch.long), torch.zeros(2 * bs, dtype=torch.long)], | |
dim=0, | |
).to(image.device) | |
loss_itm = F.cross_entropy(logits, itm_labels) | |
##================= Image Captioning ========================## | |
decoder_input_ids = text_tokens.input_ids.clone() | |
decoder_input_ids[:, 0] = self.tokenizer.bos_token_id | |
labels = decoder_input_ids.masked_fill( | |
decoder_input_ids == self.tokenizer.pad_token_id, -100 | |
) | |
query_atts = torch.ones(query_tokens.size()[:-1], dtype=torch.long).to( | |
image.device | |
) | |
attention_mask = torch.cat([query_atts, text_tokens.attention_mask], dim=1) | |
lm_output = self.Qformer( | |
decoder_input_ids, | |
attention_mask=attention_mask, | |
past_key_values=query_output.past_key_values, | |
return_dict=True, | |
labels=labels, | |
) | |
loss_lm = lm_output.loss | |
return BlipOutput( | |
loss=loss_itc + loss_itm + loss_lm, | |
loss_itc=loss_itc, | |
loss_itm=loss_itm, | |
loss_lm=loss_lm, | |
) | |
def generate( | |
self, | |
samples, | |
use_nucleus_sampling=False, | |
num_beams=3, | |
max_length=30, | |
min_length=10, | |
top_p=0.9, | |
repetition_penalty=1.0, | |
): | |
""" | |
Args: | |
samples (dict): A dictionary containing the following keys: | |
- image (torch.Tensor): A tensor of shape (batch_size, 3, H, W) | |
use_nucleus_sampling (bool): Whether to use nucleus sampling. If False, use top-k sampling. | |
num_beams (int): Number of beams for beam search. 1 means no beam search. | |
max_length (int): The maximum length of the sequence to be generated. | |
min_length (int): The minimum length of the sequence to be generated. | |
top_p (float): The cumulative probability for nucleus sampling. | |
repetition_penalty (float): The parameter for repetition penalty. 1.0 means no penalty. | |
num_captions (int): Number of captions to be generated for each image. | |
Returns: | |
captions (list): A list of strings of length batch_size * num_captions. | |
""" | |
image = samples["image"] | |
image_embeds = self.ln_vision(self.visual_encoder(image)) | |
if not use_nucleus_sampling: | |
image_embeds = image_embeds.repeat_interleave(num_beams, dim=0) | |
else: | |
num_beams = 1 | |
image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to( | |
image.device | |
) | |
model_kwargs = { | |
"encoder_hidden_states": image_embeds, | |
"encoder_attention_mask": image_atts, | |
} | |
input_ids = ( | |
torch.LongTensor(image.size(0), 1) | |
.fill_(self.tokenizer.bos_token_id) | |
.to(image.device) | |
) | |
query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1) | |
outputs = self.Qformer.generate( | |
input_ids=input_ids, | |
query_embeds=query_tokens, | |
max_length=max_length, | |
min_length=min_length, | |
num_beams=num_beams, | |
do_sample=use_nucleus_sampling, | |
top_p=top_p, | |
eos_token_id=self.tokenizer.sep_token_id, | |
pad_token_id=self.tokenizer.pad_token_id, | |
**model_kwargs | |
) | |
captions = self.tokenizer.batch_decode(outputs, skip_special_tokens=True) | |
return captions | |
def forward_visual_encoder(self, image): | |
with torch.no_grad(): | |
with self.maybe_autocast(): | |
image_embeds_frozen = self.visual_encoder(image, output_hidden_states=True) | |
image_embeds_frozen = [ln(image_embeds_frozen[lvl]) for lvl, ln in zip(self.multilevels, self.ln_vision)] | |
image_embeds_frozen = [image_embed.float() for image_embed in image_embeds_frozen] | |
image_atts = [torch.ones( | |
image_embed.size()[:-1], dtype=torch.long | |
).to(self.device) for image_embed in image_embeds_frozen] | |
return image_embeds_frozen, image_atts | |
def forward_qformer(self, caption, image_embeds_frozen, image_atts, output_hidden_states=False): | |
query_tokens = self.query_tokens.expand( | |
image_embeds_frozen.shape[0], -1, -1 | |
) | |
query_atts = torch.ones(query_tokens.size()[:-1], dtype=torch.long).to( | |
self.device | |
) | |
text = self.tokenizer(caption, return_tensors="pt", padding=True, truncation=True).to( | |
self.device | |
) | |
attention_mask = torch.cat([query_atts, text.attention_mask], dim=1) | |
query_pos_embeds = self.query_tokens.repeat(image_embeds_frozen.shape[0], 1, 1) | |
output = self.Qformer.bert( | |
text.input_ids, | |
query_embeds=query_tokens, | |
attention_mask=attention_mask, | |
encoder_hidden_states=image_embeds_frozen, | |
encoder_attention_mask=image_atts, | |
query_pos_embeds=query_pos_embeds, | |
output_hidden_states=output_hidden_states, | |
return_dict=True, | |
) | |
hidden_states = [feat[:, : query_tokens.size(1), :] for feat in output.hidden_states] | |
return hidden_states | |
def forward_qformer(self, caption, image_embeds_frozen, image_atts): | |
bs = image_embeds_frozen[0].shape[0] | |
query_tokens = self.query_tokens.expand(bs, -1, -1) | |
query_atts = torch.ones(query_tokens.size()[:-1], dtype=torch.long).to(self.device) | |
text = self.tokenizer(['']*len(caption), return_tensors="pt", padding=True, truncation=True, max_length=512).to( | |
self.device | |
) | |
attention_mask = torch.cat([query_atts, text.attention_mask], dim=1) | |
query_pos_embeds = self.query_tokens.repeat(bs, 1, 1) | |
output = self.Qformer.bert( | |
text.input_ids, | |
query_embeds=query_tokens, | |
attention_mask=attention_mask, | |
encoder_hidden_states=image_embeds_frozen, | |
encoder_attention_mask=image_atts, | |
query_pos_embeds=query_pos_embeds, | |
output_hidden_states=True, | |
return_dict=True, | |
) | |
hidden_states = [feat[:, : query_tokens.size(1), :] for feat in output.hidden_states] | |
return hidden_states | |
def forward_image(self, image): | |
image_embeds = self.ln_vision(self.visual_encoder(image)) | |
image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to( | |
image.device | |
) | |
query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1) | |
query_output = self.Qformer.bert( | |
query_embeds=query_tokens, | |
encoder_hidden_states=image_embeds, | |
encoder_attention_mask=image_atts, | |
return_dict=True, | |
) | |
return query_output.last_hidden_state, image_embeds | |
def forward_text(self, text_tokens): | |
text_output = self.Qformer.bert( | |
text_tokens.input_ids, | |
attention_mask=text_tokens.attention_mask, | |
return_dict=True, | |
) | |
return text_output.last_hidden_state[:, 0, :] | |
def compute_itm(self, image_inputs, text_ids, text_atts): | |
image_atts = torch.ones(image_inputs.size()[:-1], dtype=torch.long).to( | |
image_inputs.device | |
) | |
query_tokens = self.query_tokens.expand(image_inputs.shape[0], -1, -1) | |
query_atts = torch.ones(query_tokens.size()[:-1], dtype=torch.long).to( | |
image_inputs.device | |
) | |
attention_mask = torch.cat([query_atts, text_atts], dim=1) | |
output_itm = self.Qformer.bert( | |
text_ids, | |
query_embeds=query_tokens, | |
attention_mask=attention_mask, | |
encoder_hidden_states=image_inputs, | |
encoder_attention_mask=image_atts, | |
return_dict=True, | |
) | |
vl_embeddings = output_itm.last_hidden_state[:, : query_tokens.size(1), :] | |
itm_logit = self.itm_head(vl_embeddings) | |
itm_logit = itm_logit[:, :, 1].mean(dim=1) | |
return itm_logit | |
def extract_features(self, samples, mode="multimodal"): | |
""" | |
Extract features for multimodal or unimodal samples. | |
Args: | |
samples (dict): A dictionary of samples, containing the following keys: | |
- image (torch.Tensor): A tensor of shape (B, C, H, W) containing the image. | |
Raw images should be preprocessed before being passed to feature extractor. | |
- text_input (list): A list of strings containing the text, length B. | |
mode (str): The mode of feature extraction. Can be either "multimodal", "text" or "image". | |
If "multimodal", return image features and multimodal features; | |
if "text", return text features; | |
if "image", return image features. | |
Default: "multimodal". | |
Returns: | |
BlipOutputFeatures: A BlipOutputFeatures object containing the features. | |
See lavis/models/blip_models/blip_outputs.py for more details. | |
""" | |
image = samples.get("image") | |
caption = samples.get("text_input") | |
# assert mode is one of "image", "text", "multimodal" | |
assert mode in [ | |
"image", | |
"text", | |
"multimodal", | |
], "mode must be one of 'image', 'text', 'multimodal'" | |
# initalize output | |
image_embeds, text_embeds, multimodal_embeds = None, None, None | |
image_features, text_features = None, None | |
if mode == "image": | |
assert ( | |
image is not None | |
), "Image is not provided for mode 'image' or 'multimodal'" | |
# return query features | |
with self.maybe_autocast(): | |
image_embeds_frozen = self.ln_vision(self.visual_encoder(image)) | |
image_embeds_frozen = image_embeds_frozen.float() | |
image_atts = torch.ones( | |
image_embeds_frozen.size()[:-1], dtype=torch.long | |
).to(self.device) | |
query_tokens = self.query_tokens.expand( | |
image_embeds_frozen.shape[0], -1, -1 | |
) | |
query_output = self.Qformer.bert( | |
query_embeds=query_tokens, | |
encoder_hidden_states=image_embeds_frozen, | |
encoder_attention_mask=image_atts, | |
return_dict=True, | |
) | |
image_embeds = query_output.last_hidden_state | |
image_features = F.normalize(self.vision_proj(image_embeds), dim=-1) | |
elif mode == "text": | |
assert ( | |
caption is not None | |
), "text input is None for mode 'text' or 'multimodal'" | |
# return text features | |
text = self.tokenizer(caption, return_tensors="pt", padding=True).to( | |
self.device | |
) | |
text_output = self.Qformer.bert( | |
text.input_ids, | |
attention_mask=text.attention_mask, | |
return_dict=True, | |
) | |
text_embeds = text_output.last_hidden_state | |
text_features = self.text_proj(text_embeds) | |
text_features = F.normalize(text_features, dim=-1) | |
elif mode == "multimodal": | |
# return multimodel query features | |
with self.maybe_autocast(): | |
image_embeds_frozen = self.ln_vision(self.visual_encoder(image)) | |
image_embeds_frozen = image_embeds_frozen.float() | |
image_atts = torch.ones( | |
image_embeds_frozen.size()[:-1], dtype=torch.long | |
).to(self.device) | |
query_tokens = self.query_tokens.expand( | |
image_embeds_frozen.shape[0], -1, -1 | |
) | |
query_atts = torch.ones(query_tokens.size()[:-1], dtype=torch.long).to( | |
self.device | |
) | |
text = self.tokenizer(caption, return_tensors="pt", padding=True).to( | |
self.device | |
) | |
attention_mask = torch.cat([query_atts, text.attention_mask], dim=1) | |
output = self.Qformer.bert( | |
text.input_ids, | |
query_embeds=query_tokens, | |
attention_mask=attention_mask, | |
encoder_hidden_states=image_embeds_frozen, | |
encoder_attention_mask=image_atts, | |
return_dict=True, | |
) | |
multimodal_embeds = output.last_hidden_state[:, : query_tokens.size(1), :] | |
return BlipOutputFeatures( | |
image_embeds=image_embeds, | |
image_embeds_proj=image_features, | |
text_embeds=text_embeds, | |
text_embeds_proj=text_features, | |
multimodal_embeds=multimodal_embeds, | |
) | |
def from_config(cls, cfg): | |
vit_model = cfg.get("vit_model", "eva_clip_g") | |
img_size = cfg.get("image_size") | |
num_query_token = cfg.get("num_query_token") | |
cross_attention_freq = cfg.get("cross_attention_freq", 2) | |
drop_path_rate = cfg.get("drop_path_rate", 0) | |
use_grad_checkpoint = cfg.get("use_grad_checkpoint", False) | |
vit_precision = cfg.get("vit_precision", "fp16") | |
freeze_vit = cfg.get("freeze_vit", True) | |
max_txt_len = cfg.get("max_txt_len", 32) | |
model = cls( | |
vit_model=vit_model, | |
img_size=img_size, | |
drop_path_rate=drop_path_rate, | |
use_grad_checkpoint=use_grad_checkpoint, | |
vit_precision=vit_precision, | |
freeze_vit=freeze_vit, | |
num_query_token=num_query_token, | |
cross_attention_freq=cross_attention_freq, | |
max_txt_len=max_txt_len, | |
) | |
model.load_checkpoint_from_config(cfg) | |
return model | |
def compute_sim_matrix(self, data_loader, task_cfg): | |
""" | |
Compute similarity i2t, t2i matrix for the given data loader. | |
""" | |
k_test = task_cfg.k_test | |
return compute_sim_matrix(model=self, data_loader=data_loader, k_test=k_test) | |