nowsyn's picture
upload codes
54a7220
# Copyright (c) Facebook, Inc. and its affiliates.
# Copied from: https://github.com/facebookresearch/detectron2/blob/master/demo/predictor.py
import atexit
import bisect
import multiprocessing as mp
from collections import deque
import pdb
import cv2
import copy
import torch
import numpy as np
import detectron2.data.transforms as T
from detectron2.data import MetadataCatalog
from detectron2.engine.defaults import DefaultPredictor
from detectron2.utils.video_visualizer import VideoVisualizer
from detectron2.utils.visualizer import ColorMode, Visualizer
from mask2former.data.dataset_mappers.crop_augmentations import BatchResizeShortestEdge, EntityCrop, EntityCropTransform
class VisualizationDemo(object):
def __init__(self, cfg, instance_mode=ColorMode.IMAGE, parallel=False):
"""
Args:
cfg (CfgNode):
instance_mode (ColorMode):
parallel (bool): whether to run the model in different processes from visualization.
Useful since the visualization logic can be slow.
"""
self.metadata = MetadataCatalog.get(
cfg.DATASETS.TEST[0] if len(cfg.DATASETS.TEST) else "__unused"
)
self.cpu_device = torch.device("cpu")
self.instance_mode = instance_mode
self.parallel = parallel
if parallel:
num_gpu = torch.cuda.device_count()
self.predictor = AsyncPredictor(cfg, num_gpus=num_gpu)
else:
self.predictor = CropFormerPredictor(cfg)
def run_on_image(self, image):
"""
Args:
image (np.ndarray): an image of shape (H, W, C) (in BGR order).
This is the format used by OpenCV.
Returns:
predictions (dict): the output of the model.
vis_output (VisImage): the visualized image output.
"""
predictions = self.predictor(image)
return predictions
class CropFormerPredictor(DefaultPredictor):
"""
"""
def __init__(self, cfg):
super().__init__(cfg)
def generate_img_augs(self):
shortest_side = np.random.choice([self.cfg.INPUT.MIN_SIZE_TEST])
augs = [
T.ResizeShortestEdge(
(shortest_side,),
self.cfg.INPUT.MAX_SIZE_TEST,
self.cfg.INPUT.MIN_SIZE_TRAIN_SAMPLING,
),
]
# Build original image augmentation
crop_augs = []
entity_crops = EntityCrop(self.cfg.ENTITY.CROP_AREA_RATIO,
self.cfg.ENTITY.CROP_STRIDE_RATIO,
self.cfg.ENTITY.CROP_SAMPLE_NUM_TEST,
False)
crop_augs.append(entity_crops)
entity_resize = BatchResizeShortestEdge((shortest_side,), self.cfg.INPUT.MAX_SIZE_TEST, self.cfg.INPUT.MIN_SIZE_TRAIN_SAMPLING)
crop_augs.append(entity_resize)
# augs = T.AugmentationList(augs)
crop_augs = T.AugmentationList(crop_augs)
return augs, crop_augs
def __call__(self, original_image):
"""
Args:
original_image (np.ndarray): an image of shape (H, W, C) (in BGR order).
Returns:
predictions (dict):
the output of the model for one image only.
See :doc:`/tutorials/models` for details about the format.
"""
with torch.no_grad(): # https://github.com/sphinx-doc/sphinx/issues/4258
# Apply pre-processing to image.
if self.input_format == "RGB":
# whether the model expects BGR inputs or RGB
original_image = original_image[:, :, ::-1]
# build cropformer augmentations
augs, crop_augs = self.generate_img_augs()
height, width = original_image.shape[:2]
aug_input_ori = T.AugInput(copy.deepcopy(original_image))
aug_input_ori, _ = T.apply_transform_gens(augs, aug_input_ori)
image_ori = aug_input_ori.image
image_ori = torch.as_tensor(image_ori.astype("float32").transpose(2, 0, 1))
aug_input_crop = T.AugInput(copy.deepcopy(original_image))
transforms_crop = crop_augs(aug_input_crop)
image_crop = aug_input_crop.image
assert len(image_crop.shape)==4, "the image shape must be [N, H, W, C]"
image_crop = torch.as_tensor(image_crop.astype("float32").transpose(0, 3, 1, 2))
for transform_type in transforms_crop:
if isinstance(transform_type, EntityCropTransform):
crop_axises = transform_type.crop_axises
crop_indexes = transform_type.crop_indexes
inputs = {"image": image_ori,
"height": height,
"width": width,
"image_crop": image_crop,
"crop_region": crop_axises,
"crop_indexes": crop_indexes
}
# pdb.set_trace()
predictions = self.model([inputs])[0]
return predictions
class AsyncPredictor:
"""
A predictor that runs the model asynchronously, possibly on >1 GPUs.
Because rendering the visualization takes considerably amount of time,
this helps improve throughput a little bit when rendering videos.
"""
class _StopToken:
pass
class _PredictWorker(mp.Process):
def __init__(self, cfg, task_queue, result_queue):
self.cfg = cfg
self.task_queue = task_queue
self.result_queue = result_queue
super().__init__()
def run(self):
predictor = CropFormerPredictor(self.cfg)
while True:
task = self.task_queue.get()
if isinstance(task, AsyncPredictor._StopToken):
break
idx, data = task
result = predictor(data)
self.result_queue.put((idx, result))
def __init__(self, cfg, num_gpus: int = 1):
"""
Args:
cfg (CfgNode):
num_gpus (int): if 0, will run on CPU
"""
num_workers = max(num_gpus, 1)
self.task_queue = mp.Queue(maxsize=num_workers * 3)
self.result_queue = mp.Queue(maxsize=num_workers * 3)
self.procs = []
for gpuid in range(max(num_gpus, 1)):
cfg = cfg.clone()
cfg.defrost()
cfg.MODEL.DEVICE = "cuda:{}".format(gpuid) if num_gpus > 0 else "cpu"
self.procs.append(
AsyncPredictor._PredictWorker(cfg, self.task_queue, self.result_queue)
)
self.put_idx = 0
self.get_idx = 0
self.result_rank = []
self.result_data = []
for p in self.procs:
p.start()
atexit.register(self.shutdown)
def put(self, image):
self.put_idx += 1
self.task_queue.put((self.put_idx, image))
def get(self):
self.get_idx += 1 # the index needed for this request
if len(self.result_rank) and self.result_rank[0] == self.get_idx:
res = self.result_data[0]
del self.result_data[0], self.result_rank[0]
return res
while True:
# make sure the results are returned in the correct order
idx, res = self.result_queue.get()
if idx == self.get_idx:
return res
insert = bisect.bisect(self.result_rank, idx)
self.result_rank.insert(insert, idx)
self.result_data.insert(insert, res)
def __len__(self):
return self.put_idx - self.get_idx
def __call__(self, image):
self.put(image)
return self.get()
def shutdown(self):
for _ in self.procs:
self.task_queue.put(AsyncPredictor._StopToken())
@property
def default_buffer_size(self):
return len(self.procs) * 5