emotion_recognition / utils /compute_args.py
nouamanetazi's picture
nouamanetazi HF staff
initial commit
ff43e05
raw
history blame
1.29 kB
import torch
def compute_args(args):
# DataLoader
if not hasattr(args, 'dataset'): # fix for previous version
args.dataset = 'MOSEI'
if args.dataset == "MOSEI": args.dataloader = 'Mosei_Dataset'
if args.dataset == "MELD": args.dataloader = 'Meld_Dataset'
# Loss function to use
if args.dataset == 'MOSEI' and args.task == 'sentiment': args.loss_fn = torch.nn.CrossEntropyLoss(reduction="sum")
if args.dataset == 'MOSEI' and args.task == 'emotion': args.loss_fn = torch.nn.BCEWithLogitsLoss(reduction="sum")
if args.dataset == 'MELD': args.loss_fn = torch.nn.CrossEntropyLoss(reduction="sum")
# Answer size
if args.dataset == 'MOSEI' and args.task == "sentiment": args.ans_size = 7
if args.dataset == 'MOSEI' and args.task == "sentiment" and args.task_binary: args.ans_size = 2
if args.dataset == 'MOSEI' and args.task == "emotion": args.ans_size = 6
if args.dataset == 'MELD' and args.task == "emotion": args.ans_size = 7
if args.dataset == 'MELD' and args.task == "sentiment": args.ans_size = 3
if args.dataset == 'MOSEI': args.pred_func = "amax"
if args.dataset == 'MOSEI' and args.task == "emotion": args.pred_func = "multi_label"
if args.dataset == 'MELD': args.pred_func = "amax"
return args