nouamanetazi HF staff commited on
Commit
ff43e05
·
1 Parent(s): 0f6f21e

initial commit

Browse files
.gitattributes CHANGED
@@ -25,3 +25,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.pkl filter=lfs diff=lfs merge=lfs -text
29
+ *.npy filter=lfs diff=lfs merge=lfs -text
.gitignore ADDED
@@ -0,0 +1,166 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.tar.gz
2
+ data
3
+
4
+ # Initially taken from Github's Python gitignore file
5
+
6
+ # Byte-compiled / optimized / DLL files
7
+ __pycache__/
8
+ *.py[cod]
9
+ *$py.class
10
+
11
+ # C extensions
12
+ *.so
13
+
14
+ # tests and logs
15
+ tests/fixtures/cached_*_text.txt
16
+ logs/
17
+ lightning_logs/
18
+ lang_code_data/
19
+
20
+ # Distribution / packaging
21
+ .Python
22
+ build/
23
+ develop-eggs/
24
+ dist/
25
+ downloads/
26
+ eggs/
27
+ .eggs/
28
+ lib/
29
+ lib64/
30
+ parts/
31
+ sdist/
32
+ var/
33
+ wheels/
34
+ *.egg-info/
35
+ .installed.cfg
36
+ *.egg
37
+ MANIFEST
38
+
39
+ # PyInstaller
40
+ # Usually these files are written by a python script from a template
41
+ # before PyInstaller builds the exe, so as to inject date/other infos into it.
42
+ *.manifest
43
+ *.spec
44
+
45
+ # Installer logs
46
+ pip-log.txt
47
+ pip-delete-this-directory.txt
48
+
49
+ # Unit test / coverage reports
50
+ htmlcov/
51
+ .tox/
52
+ .nox/
53
+ .coverage
54
+ .coverage.*
55
+ .cache
56
+ nosetests.xml
57
+ coverage.xml
58
+ *.cover
59
+ .hypothesis/
60
+ .pytest_cache/
61
+
62
+ # Translations
63
+ *.mo
64
+ *.pot
65
+
66
+ # Django stuff:
67
+ *.log
68
+ local_settings.py
69
+ db.sqlite3
70
+
71
+ # Flask stuff:
72
+ instance/
73
+ .webassets-cache
74
+
75
+ # Scrapy stuff:
76
+ .scrapy
77
+
78
+ # Sphinx documentation
79
+ docs/_build/
80
+
81
+ # PyBuilder
82
+ target/
83
+
84
+ # Jupyter Notebook
85
+ .ipynb_checkpoints
86
+
87
+ # IPython
88
+ profile_default/
89
+ ipython_config.py
90
+
91
+ # pyenv
92
+ .python-version
93
+
94
+ # celery beat schedule file
95
+ celerybeat-schedule
96
+
97
+ # SageMath parsed files
98
+ *.sage.py
99
+
100
+ # Environments
101
+ .env
102
+ .venv
103
+ env/
104
+ venv/
105
+ ENV/
106
+ env.bak/
107
+ venv.bak/
108
+
109
+ # Spyder project settings
110
+ .spyderproject
111
+ .spyproject
112
+
113
+ # Rope project settings
114
+ .ropeproject
115
+
116
+ # mkdocs documentation
117
+ /site
118
+
119
+ # mypy
120
+ .mypy_cache/
121
+ .dmypy.json
122
+ dmypy.json
123
+
124
+ # Pyre type checker
125
+ .pyre/
126
+
127
+ # vscode
128
+ .vs
129
+ .vscode
130
+
131
+ # Pycharm
132
+ .idea
133
+
134
+ # TF code
135
+ tensorflow_code
136
+
137
+ # Models
138
+ proc_data
139
+
140
+ # examples
141
+ runs
142
+ /runs_old
143
+ /wandb
144
+ /examples/runs
145
+ /examples/**/*.args
146
+ /examples/rag/sweep
147
+
148
+ # data
149
+ /data
150
+ serialization_dir
151
+
152
+ # emacs
153
+ *.*~
154
+ debug.env
155
+
156
+ # vim
157
+ .*.swp
158
+
159
+ #ctags
160
+ tags
161
+
162
+ # pre-commit
163
+ .pre-commit*
164
+
165
+ # .lock
166
+ *.lock
ckpt/Model_LA_e/best81.21325494388027_1117766.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8c49968f8c2bcd7ec0489bd88c1f41418d15f01932264487c6d088807dcaaf4c
3
+ size 391671429
inference.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
layers/fc.py ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch.nn as nn
2
+
3
+ class FC(nn.Module):
4
+ def __init__(self, in_size, out_size, dropout_r=0., use_relu=True):
5
+ super(FC, self).__init__()
6
+ self.dropout_r = dropout_r
7
+ self.use_relu = use_relu
8
+
9
+ self.linear = nn.Linear(in_size, out_size)
10
+
11
+ if use_relu:
12
+ self.relu = nn.ReLU(inplace=True)
13
+
14
+ if dropout_r > 0:
15
+ self.dropout = nn.Dropout(dropout_r)
16
+
17
+ def forward(self, x):
18
+ x = self.linear(x)
19
+
20
+ if self.use_relu:
21
+ x = self.relu(x)
22
+
23
+ if self.dropout_r > 0:
24
+ x = self.dropout(x)
25
+
26
+ return x
27
+
28
+
29
+ class MLP(nn.Module):
30
+ def __init__(self, in_size, mid_size, out_size, dropout_r=0., use_relu=True):
31
+ super(MLP, self).__init__()
32
+
33
+ self.fc = FC(in_size, mid_size, dropout_r=dropout_r, use_relu=use_relu)
34
+ self.linear = nn.Linear(mid_size, out_size)
35
+
36
+ def forward(self, x):
37
+ return self.linear(self.fc(x))
layers/layer_norm.py ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch.nn as nn
2
+ import torch
3
+
4
+ class LayerNorm(nn.Module):
5
+ def __init__(self, size, eps=1e-6):
6
+ super(LayerNorm, self).__init__()
7
+ self.eps = eps
8
+
9
+ self.a_2 = nn.Parameter(torch.ones(size))
10
+ self.b_2 = nn.Parameter(torch.zeros(size))
11
+
12
+ def forward(self, x):
13
+ mean = x.mean(-1, keepdim=True)
14
+ std = x.std(-1, keepdim=True)
15
+ return self.a_2 * (x - mean) / (std + self.eps) + self.b_2
16
+
model_LA.py ADDED
@@ -0,0 +1,343 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import torch
3
+ import torch.nn as nn
4
+ import torch.nn.functional as F
5
+
6
+ from layers.fc import MLP, FC
7
+ from layers.layer_norm import LayerNorm
8
+
9
+ # ------------------------------------
10
+ # ---------- Masking sequence --------
11
+ # ------------------------------------
12
+ def make_mask(feature):
13
+ return (torch.sum(
14
+ torch.abs(feature),
15
+ dim=-1
16
+ ) == 0).unsqueeze(1).unsqueeze(2)
17
+
18
+ # ------------------------------
19
+ # ---------- Flattening --------
20
+ # ------------------------------
21
+
22
+
23
+ class AttFlat(nn.Module):
24
+ def __init__(self, args, flat_glimpse, merge=False):
25
+ super(AttFlat, self).__init__()
26
+ self.args = args
27
+ self.merge = merge
28
+ self.flat_glimpse = flat_glimpse
29
+ self.mlp = MLP(
30
+ in_size=args.hidden_size,
31
+ mid_size=args.ff_size,
32
+ out_size=flat_glimpse,
33
+ dropout_r=args.dropout_r,
34
+ use_relu=True
35
+ )
36
+
37
+ if self.merge:
38
+ self.linear_merge = nn.Linear(
39
+ args.hidden_size * flat_glimpse,
40
+ args.hidden_size * 2
41
+ )
42
+
43
+ def forward(self, x, x_mask):
44
+ att = self.mlp(x)
45
+ if x_mask is not None:
46
+ att = att.masked_fill(
47
+ x_mask.squeeze(1).squeeze(1).unsqueeze(2),
48
+ -1e9
49
+ )
50
+ att = F.softmax(att, dim=1)
51
+
52
+ att_list = []
53
+ for i in range(self.flat_glimpse):
54
+ att_list.append(
55
+ torch.sum(att[:, :, i: i + 1] * x, dim=1)
56
+ )
57
+
58
+ if self.merge:
59
+ x_atted = torch.cat(att_list, dim=1)
60
+ x_atted = self.linear_merge(x_atted)
61
+
62
+ return x_atted
63
+
64
+ return torch.stack(att_list).transpose_(0, 1)
65
+
66
+ # ------------------------
67
+ # ---- Self Attention ----
68
+ # ------------------------
69
+
70
+ class SA(nn.Module):
71
+ def __init__(self, args):
72
+ super(SA, self).__init__()
73
+
74
+ self.mhatt = MHAtt(args)
75
+ self.ffn = FFN(args)
76
+
77
+ self.dropout1 = nn.Dropout(args.dropout_r)
78
+ self.norm1 = LayerNorm(args.hidden_size)
79
+
80
+ self.dropout2 = nn.Dropout(args.dropout_r)
81
+ self.norm2 = LayerNorm(args.hidden_size)
82
+
83
+ def forward(self, y, y_mask):
84
+ y = self.norm1(y + self.dropout1(
85
+ self.mhatt(y, y, y, y_mask)
86
+ ))
87
+
88
+ y = self.norm2(y + self.dropout2(
89
+ self.ffn(y)
90
+ ))
91
+
92
+ return y
93
+
94
+
95
+ # -------------------------------
96
+ # ---- Self Guided Attention ----
97
+ # -------------------------------
98
+
99
+ class SGA(nn.Module):
100
+ def __init__(self, args):
101
+ super(SGA, self).__init__()
102
+
103
+ self.mhatt1 = MHAtt(args)
104
+ self.mhatt2 = MHAtt(args)
105
+ self.ffn = FFN(args)
106
+
107
+ self.dropout1 = nn.Dropout(args.dropout_r)
108
+ self.norm1 = LayerNorm(args.hidden_size)
109
+
110
+ self.dropout2 = nn.Dropout(args.dropout_r)
111
+ self.norm2 = LayerNorm(args.hidden_size)
112
+
113
+ self.dropout3 = nn.Dropout(args.dropout_r)
114
+ self.norm3 = LayerNorm(args.hidden_size)
115
+
116
+ def forward(self, x, y, x_mask, y_mask):
117
+ x = self.norm1(x + self.dropout1(
118
+ self.mhatt1(v=x, k=x, q=x, mask=x_mask)
119
+ ))
120
+
121
+ x = self.norm2(x + self.dropout2(
122
+ self.mhatt2(v=y, k=y, q=x, mask=y_mask)
123
+ ))
124
+
125
+ x = self.norm3(x + self.dropout3(
126
+ self.ffn(x)
127
+ ))
128
+
129
+ return x
130
+
131
+ # ------------------------------
132
+ # ---- Multi-Head Attention ----
133
+ # ------------------------------
134
+
135
+ class MHAtt(nn.Module):
136
+ def __init__(self, args):
137
+ super(MHAtt, self).__init__()
138
+ self.args = args
139
+
140
+ self.linear_v = nn.Linear(args.hidden_size, args.hidden_size)
141
+ self.linear_k = nn.Linear(args.hidden_size, args.hidden_size)
142
+ self.linear_q = nn.Linear(args.hidden_size, args.hidden_size)
143
+ self.linear_merge = nn.Linear(args.hidden_size, args.hidden_size)
144
+
145
+ self.dropout = nn.Dropout(args.dropout_r)
146
+
147
+ def forward(self, v, k, q, mask):
148
+ n_batches = q.size(0)
149
+ v = self.linear_v(v).view(
150
+ n_batches,
151
+ -1,
152
+ self.args.multi_head,
153
+ int(self.args.hidden_size / self.args.multi_head)
154
+ ).transpose(1, 2)
155
+
156
+ k = self.linear_k(k).view(
157
+ n_batches,
158
+ -1,
159
+ self.args.multi_head,
160
+ int(self.args.hidden_size / self.args.multi_head)
161
+ ).transpose(1, 2)
162
+
163
+ q = self.linear_q(q).view(
164
+ n_batches,
165
+ -1,
166
+ self.args.multi_head,
167
+ int(self.args.hidden_size / self.args.multi_head)
168
+ ).transpose(1, 2)
169
+
170
+ atted = self.att(v, k, q, mask)
171
+
172
+ atted = atted.transpose(1, 2).contiguous().view(
173
+ n_batches,
174
+ -1,
175
+ self.args.hidden_size
176
+ )
177
+ atted = self.linear_merge(atted)
178
+
179
+ return atted
180
+
181
+ def att(self, value, key, query, mask):
182
+ d_k = query.size(-1)
183
+
184
+ scores = torch.matmul(
185
+ query, key.transpose(-2, -1)
186
+ ) / math.sqrt(d_k)
187
+
188
+ if mask is not None:
189
+ scores = scores.masked_fill(mask, -1e9)
190
+
191
+ att_map = F.softmax(scores, dim=-1)
192
+ att_map = self.dropout(att_map)
193
+
194
+ return torch.matmul(att_map, value)
195
+
196
+
197
+ # ---------------------------
198
+ # ---- Feed Forward Nets ----
199
+ # ---------------------------
200
+
201
+ class FFN(nn.Module):
202
+ def __init__(self, args):
203
+ super(FFN, self).__init__()
204
+
205
+ self.mlp = MLP(
206
+ in_size=args.hidden_size,
207
+ mid_size=args.ff_size,
208
+ out_size=args.hidden_size,
209
+ dropout_r=args.dropout_r,
210
+ use_relu=True
211
+ )
212
+
213
+ def forward(self, x):
214
+ return self.mlp(x)
215
+
216
+ # ---------------------------
217
+ # ---- FF + norm -----------
218
+ # ---------------------------
219
+ class FFAndNorm(nn.Module):
220
+ def __init__(self, args):
221
+ super(FFAndNorm, self).__init__()
222
+
223
+ self.ffn = FFN(args)
224
+ self.norm1 = LayerNorm(args.hidden_size)
225
+ self.dropout2 = nn.Dropout(args.dropout_r)
226
+ self.norm2 = LayerNorm(args.hidden_size)
227
+
228
+ def forward(self, x):
229
+ x = self.norm1(x)
230
+ x = self.norm2(x + self.dropout2(self.ffn(x)))
231
+ return x
232
+
233
+
234
+
235
+ class Block(nn.Module):
236
+ def __init__(self, args, i):
237
+ super(Block, self).__init__()
238
+ self.args = args
239
+ self.sa1 = SA(args)
240
+ self.sa3 = SGA(args)
241
+
242
+ self.last = (i == args.layer-1)
243
+ if not self.last:
244
+ self.att_lang = AttFlat(args, args.lang_seq_len, merge=False)
245
+ self.att_audio = AttFlat(args, args.audio_seq_len, merge=False)
246
+ self.norm_l = LayerNorm(args.hidden_size)
247
+ self.norm_i = LayerNorm(args.hidden_size)
248
+ self.dropout = nn.Dropout(args.dropout_r)
249
+
250
+ def forward(self, x, x_mask, y, y_mask):
251
+
252
+ ax = self.sa1(x, x_mask)
253
+ ay = self.sa3(y, x, y_mask, x_mask)
254
+
255
+ x = ax + x
256
+ y = ay + y
257
+
258
+ if self.last:
259
+ return x, y
260
+
261
+ ax = self.att_lang(x, x_mask)
262
+ ay = self.att_audio(y, y_mask)
263
+
264
+ return self.norm_l(x + self.dropout(ax)), \
265
+ self.norm_i(y + self.dropout(ay))
266
+
267
+
268
+ class Model_LA(nn.Module):
269
+ def __init__(self, args, vocab_size, pretrained_emb):
270
+ super(Model_LA, self).__init__()
271
+
272
+ self.args = args
273
+
274
+ # LSTM
275
+ self.embedding = nn.Embedding(
276
+ num_embeddings=vocab_size,
277
+ embedding_dim=args.word_embed_size
278
+ )
279
+
280
+ # Loading the GloVe embedding weights
281
+ self.embedding.weight.data.copy_(torch.from_numpy(pretrained_emb))
282
+
283
+ self.lstm_x = nn.LSTM(
284
+ input_size=args.word_embed_size,
285
+ hidden_size=args.hidden_size,
286
+ num_layers=1,
287
+ batch_first=True
288
+ )
289
+
290
+ # self.lstm_y = nn.LSTM(
291
+ # input_size=args.audio_feat_size,
292
+ # hidden_size=args.hidden_size,
293
+ # num_layers=1,
294
+ # batch_first=True
295
+ # )
296
+
297
+ # Feature size to hid size
298
+ self.adapter = nn.Linear(args.audio_feat_size, args.hidden_size)
299
+
300
+ # Encoder blocks
301
+ self.enc_list = nn.ModuleList([Block(args, i) for i in range(args.layer)])
302
+
303
+ # Flattenting features before proj
304
+ self.attflat_img = AttFlat(args, 1, merge=True)
305
+ self.attflat_lang = AttFlat(args, 1, merge=True)
306
+
307
+ # Classification layers
308
+ self.proj_norm = LayerNorm(2 * args.hidden_size)
309
+ self.proj = self.proj = nn.Linear(2 * args.hidden_size, args.ans_size)
310
+
311
+ def forward(self, x, y, _):
312
+ x_mask = make_mask(x.unsqueeze(2))
313
+ y_mask = make_mask(y)
314
+
315
+ embedding = self.embedding(x)
316
+
317
+ x, _ = self.lstm_x(embedding)
318
+ # y, _ = self.lstm_y(y)
319
+
320
+ y = self.adapter(y)
321
+
322
+ for i, dec in enumerate(self.enc_list):
323
+ x_m, x_y = None, None
324
+ if i == 0:
325
+ x_m, x_y = x_mask, y_mask
326
+ x, y = dec(x, x_m, y, x_y)
327
+
328
+ x = self.attflat_lang(
329
+ x,
330
+ None
331
+ )
332
+
333
+ y = self.attflat_img(
334
+ y,
335
+ None
336
+ )
337
+
338
+ # Classification layers
339
+ proj_feat = x + y
340
+ proj_feat = self.proj_norm(proj_feat)
341
+ ans = self.proj(proj_feat)
342
+
343
+ return ans
model_LAV.py ADDED
@@ -0,0 +1,367 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import torch
3
+ import torch.nn as nn
4
+ import torch.nn.functional as F
5
+
6
+ from layers.fc import MLP
7
+ from layers.layer_norm import LayerNorm
8
+
9
+ # ------------------------------------
10
+ # ---------- Masking sequence --------
11
+ # ------------------------------------
12
+ def make_mask(feature):
13
+ return (torch.sum(
14
+ torch.abs(feature),
15
+ dim=-1
16
+ ) == 0).unsqueeze(1).unsqueeze(2)
17
+
18
+ # ------------------------------
19
+ # ---------- Flattening --------
20
+ # ------------------------------
21
+
22
+
23
+ class AttFlat(nn.Module):
24
+ def __init__(self, args, flat_glimpse, merge=False):
25
+ super(AttFlat, self).__init__()
26
+ self.args = args
27
+ self.merge = merge
28
+ self.flat_glimpse = flat_glimpse
29
+ self.mlp = MLP(
30
+ in_size=args.hidden_size,
31
+ mid_size=args.ff_size,
32
+ out_size=flat_glimpse,
33
+ dropout_r=args.dropout_r,
34
+ use_relu=True
35
+ )
36
+
37
+ if self.merge:
38
+ self.linear_merge = nn.Linear(
39
+ args.hidden_size * flat_glimpse,
40
+ args.hidden_size * 2
41
+ )
42
+
43
+ def forward(self, x, x_mask):
44
+ att = self.mlp(x)
45
+ if x_mask is not None:
46
+ att = att.masked_fill(
47
+ x_mask.squeeze(1).squeeze(1).unsqueeze(2),
48
+ -1e9
49
+ )
50
+ att = F.softmax(att, dim=1)
51
+
52
+ att_list = []
53
+ for i in range(self.flat_glimpse):
54
+ att_list.append(
55
+ torch.sum(att[:, :, i: i + 1] * x, dim=1)
56
+ )
57
+
58
+ if self.merge:
59
+ x_atted = torch.cat(att_list, dim=1)
60
+ x_atted = self.linear_merge(x_atted)
61
+
62
+ return x_atted
63
+
64
+ return torch.stack(att_list).transpose_(0, 1)
65
+
66
+ # ------------------------
67
+ # ---- Self Attention ----
68
+ # ------------------------
69
+
70
+ class SA(nn.Module):
71
+ def __init__(self, args):
72
+ super(SA, self).__init__()
73
+
74
+ self.mhatt = MHAtt(args)
75
+ self.ffn = FFN(args)
76
+
77
+ self.dropout1 = nn.Dropout(args.dropout_r)
78
+ self.norm1 = LayerNorm(args.hidden_size)
79
+
80
+ self.dropout2 = nn.Dropout(args.dropout_r)
81
+ self.norm2 = LayerNorm(args.hidden_size)
82
+
83
+ def forward(self, y, y_mask):
84
+ y = self.norm1(y + self.dropout1(
85
+ self.mhatt(y, y, y, y_mask)
86
+ ))
87
+
88
+ y = self.norm2(y + self.dropout2(
89
+ self.ffn(y)
90
+ ))
91
+
92
+ return y
93
+
94
+
95
+ # -------------------------------
96
+ # ---- Self Guided Attention ----
97
+ # -------------------------------
98
+
99
+ class SGA(nn.Module):
100
+ def __init__(self, args):
101
+ super(SGA, self).__init__()
102
+
103
+ self.mhatt1 = MHAtt(args)
104
+ self.mhatt2 = MHAtt(args)
105
+ self.ffn = FFN(args)
106
+
107
+ self.dropout1 = nn.Dropout(args.dropout_r)
108
+ self.norm1 = LayerNorm(args.hidden_size)
109
+
110
+ self.dropout2 = nn.Dropout(args.dropout_r)
111
+ self.norm2 = LayerNorm(args.hidden_size)
112
+
113
+ self.dropout3 = nn.Dropout(args.dropout_r)
114
+ self.norm3 = LayerNorm(args.hidden_size)
115
+
116
+ def forward(self, x, y, x_mask, y_mask):
117
+ x = self.norm1(x + self.dropout1(
118
+ self.mhatt1(v=x, k=x, q=x, mask=x_mask)
119
+ ))
120
+
121
+ x = self.norm2(x + self.dropout2(
122
+ self.mhatt2(v=y, k=y, q=x, mask=y_mask)
123
+ ))
124
+
125
+ x = self.norm3(x + self.dropout3(
126
+ self.ffn(x)
127
+ ))
128
+
129
+ return x
130
+
131
+ # ------------------------------
132
+ # ---- Multi-Head Attention ----
133
+ # ------------------------------
134
+
135
+ class MHAtt(nn.Module):
136
+ def __init__(self, args):
137
+ super(MHAtt, self).__init__()
138
+ self.args = args
139
+
140
+ self.linear_v = nn.Linear(args.hidden_size, args.hidden_size)
141
+ self.linear_k = nn.Linear(args.hidden_size, args.hidden_size)
142
+ self.linear_q = nn.Linear(args.hidden_size, args.hidden_size)
143
+ self.linear_merge = nn.Linear(args.hidden_size, args.hidden_size)
144
+
145
+ self.dropout = nn.Dropout(args.dropout_r)
146
+
147
+ def forward(self, v, k, q, mask):
148
+ n_batches = q.size(0)
149
+ v = self.linear_v(v).view(
150
+ n_batches,
151
+ -1,
152
+ self.args.multi_head,
153
+ int(self.args.hidden_size / self.args.multi_head)
154
+ ).transpose(1, 2)
155
+
156
+ k = self.linear_k(k).view(
157
+ n_batches,
158
+ -1,
159
+ self.args.multi_head,
160
+ int(self.args.hidden_size / self.args.multi_head)
161
+ ).transpose(1, 2)
162
+
163
+ q = self.linear_q(q).view(
164
+ n_batches,
165
+ -1,
166
+ self.args.multi_head,
167
+ int(self.args.hidden_size / self.args.multi_head)
168
+ ).transpose(1, 2)
169
+
170
+ atted = self.att(v, k, q, mask)
171
+
172
+ atted = atted.transpose(1, 2).contiguous().view(
173
+ n_batches,
174
+ -1,
175
+ self.args.hidden_size
176
+ )
177
+ atted = self.linear_merge(atted)
178
+
179
+ return atted
180
+
181
+ def att(self, value, key, query, mask):
182
+ d_k = query.size(-1)
183
+
184
+ scores = torch.matmul(
185
+ query, key.transpose(-2, -1)
186
+ ) / math.sqrt(d_k)
187
+
188
+ if mask is not None:
189
+ scores = scores.masked_fill(mask, -1e9)
190
+
191
+ att_map = F.softmax(scores, dim=-1)
192
+ att_map = self.dropout(att_map)
193
+
194
+ return torch.matmul(att_map, value)
195
+
196
+
197
+ # ---------------------------
198
+ # ---- Feed Forward Nets ----
199
+ # ---------------------------
200
+
201
+ class FFN(nn.Module):
202
+ def __init__(self, args):
203
+ super(FFN, self).__init__()
204
+
205
+ self.mlp = MLP(
206
+ in_size=args.hidden_size,
207
+ mid_size=args.ff_size,
208
+ out_size=args.hidden_size,
209
+ dropout_r=args.dropout_r,
210
+ use_relu=True
211
+ )
212
+
213
+ def forward(self, x):
214
+ return self.mlp(x)
215
+
216
+ # ---------------------------
217
+ # ---- FF + norm -----------
218
+ # ---------------------------
219
+ class FFAndNorm(nn.Module):
220
+ def __init__(self, args):
221
+ super(FFAndNorm, self).__init__()
222
+
223
+ self.ffn = FFN(args)
224
+ self.norm1 = LayerNorm(args.hidden_size)
225
+ self.dropout2 = nn.Dropout(args.dropout_r)
226
+ self.norm2 = LayerNorm(args.hidden_size)
227
+
228
+ def forward(self, x):
229
+ x = self.norm1(x)
230
+ x = self.norm2(x + self.dropout2(self.ffn(x)))
231
+ return x
232
+
233
+
234
+
235
+ class Block(nn.Module):
236
+ def __init__(self, args, i):
237
+ super(Block, self).__init__()
238
+ self.args = args
239
+ self.sa1 = SA(args)
240
+ self.sa2 = SGA(args)
241
+ self.sa3 = SGA(args)
242
+
243
+ self.last = (i == args.layer-1)
244
+ if not self.last:
245
+ self.att_lang = AttFlat(args, args.lang_seq_len, merge=False)
246
+ self.att_audio = AttFlat(args, args.audio_seq_len, merge=False)
247
+ self.att_vid = AttFlat(args, args.video_seq_len, merge=False)
248
+ self.norm_l = LayerNorm(args.hidden_size)
249
+ self.norm_a = LayerNorm(args.hidden_size)
250
+ self.norm_v = LayerNorm(args.hidden_size)
251
+ self.dropout = nn.Dropout(args.dropout_r)
252
+
253
+ def forward(self, x, x_mask, y, y_mask, z, z_mask):
254
+
255
+ ax = self.sa1(x, x_mask)
256
+ ay = self.sa2(y, x, y_mask, x_mask)
257
+ az = self.sa3(z, x, z_mask, x_mask)
258
+
259
+ x = ax + x
260
+ y = ay + y
261
+ z = az + z
262
+
263
+ if self.last:
264
+ return x, y, z
265
+
266
+ ax = self.att_lang(x, x_mask)
267
+ ay = self.att_audio(y, y_mask)
268
+ az = self.att_vid(z, y_mask)
269
+
270
+ return self.norm_l(x + self.dropout(ax)), \
271
+ self.norm_a(y + self.dropout(ay)), \
272
+ self.norm_v(z + self.dropout(az))
273
+
274
+
275
+
276
+ class Model_LAV(nn.Module):
277
+ def __init__(self, args, vocab_size, pretrained_emb):
278
+ super(Model_LAV, self).__init__()
279
+
280
+ self.args = args
281
+
282
+ # LSTM
283
+ self.embedding = nn.Embedding(
284
+ num_embeddings=vocab_size,
285
+ embedding_dim=args.word_embed_size
286
+ )
287
+
288
+ # Loading the GloVe embedding weights
289
+ self.embedding.weight.data.copy_(torch.from_numpy(pretrained_emb))
290
+
291
+ self.lstm_x = nn.LSTM(
292
+ input_size=args.word_embed_size,
293
+ hidden_size=args.hidden_size,
294
+ num_layers=1,
295
+ batch_first=True
296
+ )
297
+
298
+ # self.lstm_y = nn.LSTM(
299
+ # input_size=args.audio_feat_size,
300
+ # hidden_size=args.hidden_size,
301
+ # num_layers=1,
302
+ # batch_first=True
303
+ # )
304
+
305
+ # Feature size to hid size
306
+ self.adapter_y = nn.Linear(args.audio_feat_size, args.hidden_size)
307
+ self.adapter_z = nn.Linear(args.video_feat_size, args.hidden_size)
308
+
309
+ # Encoder blocks
310
+ self.enc_list = nn.ModuleList([Block(args, i) for i in range(args.layer)])
311
+
312
+ # Flattenting features before proj
313
+ self.attflat_ac = AttFlat(args, 1, merge=True)
314
+ self.attflat_vid = AttFlat(args, 1, merge=True)
315
+ self.attflat_lang = AttFlat(args, 1, merge=True)
316
+
317
+ # Classification layers
318
+ self.proj_norm = LayerNorm(2 * args.hidden_size)
319
+ if self.args.task == "sentiment":
320
+ if self.args.task_binary:
321
+ self.proj = nn.Linear(2 * args.hidden_size, 2)
322
+ else:
323
+ self.proj = nn.Linear(2 * args.hidden_size, 7)
324
+ if self.args.task == "emotion":
325
+ self.proj = self.proj = nn.Linear(2 * args.hidden_size, 6)
326
+
327
+ def forward(self, x, y, z):
328
+ x_mask = make_mask(x.unsqueeze(2))
329
+ y_mask = make_mask(y)
330
+ z_mask = make_mask(z)
331
+
332
+
333
+ embedding = self.embedding(x)
334
+
335
+ x, _ = self.lstm_x(embedding)
336
+ # y, _ = self.lstm_y(y)
337
+
338
+ y, z = self.adapter_y(y), self.adapter_z(z)
339
+
340
+ for i, dec in enumerate(self.enc_list):
341
+ x_m, y_m, z_m = None, None, None
342
+ if i == 0:
343
+ x_m, y_m, z_m = x_mask, y_mask, z_mask
344
+ x, y, z = dec(x, x_m, y, y_m, z, z_m)
345
+
346
+ x = self.attflat_lang(
347
+ x,
348
+ None
349
+ )
350
+
351
+ y = self.attflat_ac(
352
+ y,
353
+ None
354
+ )
355
+
356
+ z = self.attflat_vid(
357
+ z,
358
+ None
359
+ )
360
+
361
+
362
+ # Classification layers
363
+ proj_feat = x + y + z
364
+ proj_feat = self.proj_norm(proj_feat)
365
+ ans = self.proj(proj_feat)
366
+
367
+ return ans
token_to_ix.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e1b468b2048c2ac08aaae32ba38c69fc9535af97bf7946e39ba4888794a8574d
3
+ size 286216
train_glove.npy ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c73c457f2e7d047538488d411bcc851ae45b53cf3526482c5b0f6d4b745ebd55
3
+ size 17012528
utils/__init__.py ADDED
File without changes
utils/audio.py ADDED
@@ -0,0 +1,163 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+ #/usr/bin/python2
3
+ '''
4
+ By kyubyong park. kbpark.linguist@gmail.com.
5
+ https://www.github.com/kyubyong/dc_tts
6
+ '''
7
+ from __future__ import print_function, division
8
+
9
+ import numpy as np
10
+ import librosa
11
+ import os, copy
12
+ import matplotlib
13
+ matplotlib.use('pdf')
14
+ import matplotlib.pyplot as plt
15
+ from scipy import signal
16
+
17
+ from .audio_params import Hyperparams as hp
18
+ import tensorflow as tf
19
+
20
+ def get_spectrograms(fpath):
21
+ '''Parse the wave file in `fpath` and
22
+ Returns normalized melspectrogram and linear spectrogram.
23
+
24
+ Args:
25
+ fpath: A string. The full path of a sound file.
26
+
27
+ Returns:
28
+ mel: A 2d array of shape (T, n_mels) and dtype of float32.
29
+ mag: A 2d array of shape (T, 1+n_fft/2) and dtype of float32.
30
+ '''
31
+ # Loading sound file
32
+ y, sr = librosa.load(fpath, sr=hp.sr)
33
+
34
+ # Trimming
35
+ y, _ = librosa.effects.trim(y)
36
+
37
+ # Preemphasis
38
+ y = np.append(y[0], y[1:] - hp.preemphasis * y[:-1])
39
+
40
+ # stft
41
+ linear = librosa.stft(y=y,
42
+ n_fft=hp.n_fft,
43
+ hop_length=hp.hop_length,
44
+ win_length=hp.win_length)
45
+
46
+ # magnitude spectrogram
47
+ mag = np.abs(linear) # (1+n_fft//2, T)
48
+
49
+ # mel spectrogram
50
+ mel_basis = librosa.filters.mel(hp.sr, hp.n_fft, hp.n_mels) # (n_mels, 1+n_fft//2)
51
+ mel = np.dot(mel_basis, mag) # (n_mels, t)
52
+
53
+ # to decibel
54
+ mel = 20 * np.log10(np.maximum(1e-5, mel))
55
+ mag = 20 * np.log10(np.maximum(1e-5, mag))
56
+
57
+ # normalize
58
+ mel = np.clip((mel - hp.ref_db + hp.max_db) / hp.max_db, 1e-8, 1)
59
+ mag = np.clip((mag - hp.ref_db + hp.max_db) / hp.max_db, 1e-8, 1)
60
+
61
+ # Transpose
62
+ mel = mel.T.astype(np.float32) # (T, n_mels)
63
+ mag = mag.T.astype(np.float32) # (T, 1+n_fft//2)
64
+
65
+ return mel, mag
66
+
67
+ def spectrogram2wav(mag):
68
+ '''# Generate wave file from linear magnitude spectrogram
69
+
70
+ Args:
71
+ mag: A numpy array of (T, 1+n_fft//2)
72
+
73
+ Returns:
74
+ wav: A 1-D numpy array.
75
+ '''
76
+ # transpose
77
+ mag = mag.T
78
+
79
+ # de-noramlize
80
+ mag = (np.clip(mag, 0, 1) * hp.max_db) - hp.max_db + hp.ref_db
81
+
82
+ # to amplitude
83
+ mag = np.power(10.0, mag * 0.05)
84
+
85
+ # wav reconstruction
86
+ wav = griffin_lim(mag**hp.power)
87
+
88
+ # de-preemphasis
89
+ wav = signal.lfilter([1], [1, -hp.preemphasis], wav)
90
+
91
+ # trim
92
+ wav, _ = librosa.effects.trim(wav)
93
+
94
+ return wav.astype(np.float32)
95
+
96
+ def griffin_lim(spectrogram):
97
+ '''Applies Griffin-Lim's raw.'''
98
+ X_best = copy.deepcopy(spectrogram)
99
+ for i in range(hp.n_iter):
100
+ X_t = invert_spectrogram(X_best)
101
+ est = librosa.stft(X_t, hp.n_fft, hp.hop_length, win_length=hp.win_length)
102
+ phase = est / np.maximum(1e-8, np.abs(est))
103
+ X_best = spectrogram * phase
104
+ X_t = invert_spectrogram(X_best)
105
+ y = np.real(X_t)
106
+
107
+ return y
108
+
109
+ def invert_spectrogram(spectrogram):
110
+ '''Applies inverse fft.
111
+ Args:
112
+ spectrogram: [1+n_fft//2, t]
113
+ '''
114
+ return librosa.istft(spectrogram, hp.hop_length, win_length=hp.win_length, window="hann")
115
+
116
+ def plot_alignment(alignment, gs, dir=hp.logdir):
117
+ """Plots the alignment.
118
+
119
+ Args:
120
+ alignment: A numpy array with shape of (encoder_steps, decoder_steps)
121
+ gs: (int) global step.
122
+ dir: Output path.
123
+ """
124
+ if not os.path.exists(dir): os.mkdir(dir)
125
+
126
+ fig, ax = plt.subplots()
127
+ im = ax.imshow(alignment)
128
+
129
+ fig.colorbar(im)
130
+ plt.title('{} Steps'.format(gs))
131
+ plt.savefig('{}/alignment_{}.png'.format(dir, gs), format='png')
132
+ plt.close(fig)
133
+
134
+ def guided_attention(g=0.2):
135
+ '''Guided attention. Refer to page 3 on the paper.'''
136
+ W = np.zeros((hp.max_N, hp.max_T), dtype=np.float32)
137
+ for n_pos in range(W.shape[0]):
138
+ for t_pos in range(W.shape[1]):
139
+ W[n_pos, t_pos] = 1 - np.exp(-(t_pos / float(hp.max_T) - n_pos / float(hp.max_N)) ** 2 / (2 * g * g))
140
+ return W
141
+
142
+ def learning_rate_decay(init_lr, global_step, warmup_steps = 4000.0):
143
+ '''Noam scheme from tensor2tensor'''
144
+ step = tf.to_float(global_step + 1)
145
+ return init_lr * warmup_steps**0.5 * tf.minimum(step * warmup_steps**-1.5, step**-0.5)
146
+
147
+ def load_spectrograms(fpath):
148
+ '''Read the wave file in `fpath`
149
+ and extracts spectrograms'''
150
+
151
+ fname = os.path.basename(fpath)
152
+ mel, mag = get_spectrograms(fpath)
153
+ t = mel.shape[0]
154
+
155
+ # Marginal padding for reduction shape sync.
156
+ num_paddings = hp.r - (t % hp.r) if t % hp.r != 0 else 0
157
+ mel = np.pad(mel, [[0, num_paddings], [0, 0]], mode="constant")
158
+ mag = np.pad(mag, [[0, num_paddings], [0, 0]], mode="constant")
159
+
160
+ # Reduction
161
+ mel = mel[::hp.r, :]
162
+ return fname, mel, mag
163
+
utils/audio_params.py ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+ #/usr/bin/python2
3
+ '''
4
+ By kyubyong park. kbpark.linguist@gmail.com.
5
+ https://www.github.com/kyubyong/dc_tts
6
+ '''
7
+ class Hyperparams:
8
+ '''Hyper parameters'''
9
+ # pipeline
10
+ prepro = True # if True, run `python prepro.py` first before running `python train.py`.
11
+
12
+ # signal processing
13
+ sr = 22050 # Sampling rate.
14
+ n_fft = 2048 # fft points (samples)
15
+ frame_shift = 0.0125 # seconds
16
+ frame_length = 0.05 # seconds
17
+ hop_length = int(sr * frame_shift) # samples. =276.
18
+ win_length = int(sr * frame_length) # samples. =1102.
19
+ n_mels = 80 # Number of Mel banks to generate
20
+ power = 1.5 # Exponent for amplifying the predicted magnitude
21
+ n_iter = 50 # Number of inversion iterations
22
+ preemphasis = .97
23
+ max_db = 100
24
+ ref_db = 20
25
+
26
+ # Model
27
+ r = 4 # Reduction factor. Do not change this.
28
+ dropout_rate = 0.05
29
+ e = 128 # == embedding
30
+ d = 256 # == hidden units of Text2Mel
31
+ c = 512 # == hidden units of SSRN
32
+ attention_win_size = 3
33
+
34
+ # data
35
+ data = "/data/private/voice/LJSpeech-1.0"
36
+ # data = "/data/private/voice/kate"
37
+ test_data = 'harvard_sentences.txt'
38
+ vocab = "PE abcdefghijklmnopqrstuvwxyz'.?" # P: Padding, E: EOS.
39
+ max_N = 180 # Maximum number of characters.
40
+ max_T = 210 # Maximum number of mel frames.
41
+
42
+ # training scheme
43
+ lr = 0.001 # Initial learning rate.
44
+ logdir = "logdir/LJ01"
45
+ sampledir = 'samples'
46
+ B = 32 # batch size
47
+ num_iterations = 2000000
utils/compute_args.py ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+
3
+
4
+ def compute_args(args):
5
+ # DataLoader
6
+ if not hasattr(args, 'dataset'): # fix for previous version
7
+ args.dataset = 'MOSEI'
8
+
9
+ if args.dataset == "MOSEI": args.dataloader = 'Mosei_Dataset'
10
+ if args.dataset == "MELD": args.dataloader = 'Meld_Dataset'
11
+
12
+ # Loss function to use
13
+ if args.dataset == 'MOSEI' and args.task == 'sentiment': args.loss_fn = torch.nn.CrossEntropyLoss(reduction="sum")
14
+ if args.dataset == 'MOSEI' and args.task == 'emotion': args.loss_fn = torch.nn.BCEWithLogitsLoss(reduction="sum")
15
+ if args.dataset == 'MELD': args.loss_fn = torch.nn.CrossEntropyLoss(reduction="sum")
16
+
17
+ # Answer size
18
+ if args.dataset == 'MOSEI' and args.task == "sentiment": args.ans_size = 7
19
+ if args.dataset == 'MOSEI' and args.task == "sentiment" and args.task_binary: args.ans_size = 2
20
+ if args.dataset == 'MOSEI' and args.task == "emotion": args.ans_size = 6
21
+ if args.dataset == 'MELD' and args.task == "emotion": args.ans_size = 7
22
+ if args.dataset == 'MELD' and args.task == "sentiment": args.ans_size = 3
23
+
24
+ if args.dataset == 'MOSEI': args.pred_func = "amax"
25
+ if args.dataset == 'MOSEI' and args.task == "emotion": args.pred_func = "multi_label"
26
+ if args.dataset == 'MELD': args.pred_func = "amax"
27
+
28
+ return args
utils/plot.py ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # import matplotlib.pyplot as plt
2
+ # import numpy as np
3
+ #
4
+ # def plot(d):
5
+ # # An "interface" to matplotlib.axes.Axes.hist() method
6
+ # n, bins, patches = plt.hist(x=d, bins='auto', color='#0504aa',
7
+ # alpha=0.7, rwidth=0.85)
8
+ # plt.grid(axis='y', alpha=0.75)
9
+ # plt.title('My Very Own Histogram')
10
+ # maxfreq = n.max()
11
+ # # Set a clean upper y-axis limit.
12
+ # plt.ylim(ymax=np.ceil(maxfreq / 10) * 10 if maxfreq % 10 else maxfreq + 10)
13
+ # plt.show()
utils/pred_func.py ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+
3
+
4
+ def amax(x):
5
+ return np.argmax(x, axis=1)
6
+
7
+
8
+ def multi_label(x):
9
+ return (x > 0)
utils/tokenize.py ADDED
@@ -0,0 +1,103 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # $ wget https://github.com/explosion/spacy-models/releases/download/en_vectors_web_lg-2.1.0/en_vectors_web_lg-2.1.0.tar.gz -O en_vectors_web_lg-2.1.0.tar.gz
2
+ # $ pip install en_vectors_web_lg-2.1.0.tar.gz
3
+ import en_vectors_web_lg
4
+ import re
5
+ import numpy as np
6
+ import os
7
+ import pickle
8
+
9
+ def clean(w):
10
+ return re.sub(
11
+ r"([.,'!?\"()*#:;])",
12
+ '',
13
+ w.lower()
14
+ ).replace('-', ' ').replace('/', ' ')
15
+
16
+
17
+ def tokenize(key_to_word):
18
+ key_to_sentence = {}
19
+ for k, v in key_to_word.items():
20
+ key_to_sentence[k] = [clean(w) for w in v if clean(w) != '']
21
+ return key_to_sentence
22
+
23
+
24
+ def create_dict(key_to_sentence, dataroot, use_glove=True):
25
+ token_file = dataroot+"/token_to_ix.pkl"
26
+ glove_file = dataroot+"/train_glove.npy"
27
+ if os.path.exists(glove_file) and os.path.exists(token_file):
28
+ print("Loading train language files")
29
+ return pickle.load(open(token_file, "rb")), np.load(glove_file)
30
+
31
+ print("Creating train language files")
32
+ token_to_ix = {
33
+ 'UNK': 1,
34
+ }
35
+
36
+ spacy_tool = None
37
+ pretrained_emb = []
38
+ if use_glove:
39
+ spacy_tool = en_vectors_web_lg.load()
40
+ pretrained_emb.append(spacy_tool('UNK').vector)
41
+
42
+ for k, v in key_to_sentence.items():
43
+ for word in v:
44
+ if word not in token_to_ix:
45
+ token_to_ix[word] = len(token_to_ix)
46
+ if use_glove:
47
+ pretrained_emb.append(spacy_tool(word).vector)
48
+
49
+ pretrained_emb = np.array(pretrained_emb)
50
+ np.save(glove_file, pretrained_emb)
51
+ pickle.dump(token_to_ix, open(token_file, "wb"))
52
+ return token_to_ix, pretrained_emb
53
+
54
+ def sent_to_ix(s, token_to_ix, max_token=100):
55
+ ques_ix = np.zeros(max_token, np.int64)
56
+
57
+ for ix, word in enumerate(s):
58
+ if word in token_to_ix:
59
+ ques_ix[ix] = token_to_ix[word]
60
+ else:
61
+ ques_ix[ix] = token_to_ix['UNK']
62
+
63
+ if ix + 1 == max_token:
64
+ break
65
+
66
+ return ques_ix
67
+
68
+
69
+ def cmumosei_7(a):
70
+ if a < -2:
71
+ res = 0
72
+ if -2 <= a and a < -1:
73
+ res = 1
74
+ if -1 <= a and a < 0:
75
+ res = 2
76
+ if 0 <= a and a <= 0:
77
+ res = 3
78
+ if 0 < a and a <= 1:
79
+ res = 4
80
+ if 1 < a and a <= 2:
81
+ res = 5
82
+ if a > 2:
83
+ res = 6
84
+ return res
85
+
86
+ def cmumosei_2(a):
87
+ if a < 0:
88
+ return 0
89
+ if a >= 0:
90
+ return 1
91
+
92
+ def pad_feature(feat, max_len):
93
+ if feat.shape[0] > max_len:
94
+ feat = feat[:max_len]
95
+
96
+ feat = np.pad(
97
+ feat,
98
+ ((0, max_len - feat.shape[0]), (0, 0)),
99
+ mode='constant',
100
+ constant_values=0
101
+ )
102
+
103
+ return feat