Spaces:
Runtime error
Runtime error
import gradio as gr | |
import os | |
home = os.getcwd() | |
home | |
!git clone https://github.com/IDEA-Research/GroundingDINO | |
%cd /{home}/GroundingDINO | |
!pip install -q -e . | |
text_prompt = 'basket' | |
image_path = '/kaggle/input/avataar/wall hanging.jpg' | |
output_image_path = '/kaggle/working' | |
'''Importing Libraries''' | |
import os | |
import groundingdino.datasets.transforms as T | |
import numpy as np | |
import torch | |
from groundingdino.models import build_model | |
from groundingdino.util import box_ops | |
from groundingdino.util.inference import predict | |
from groundingdino.util.slconfig import SLConfig | |
from groundingdino.util.utils import clean_state_dict | |
from huggingface_hub import hf_hub_download | |
from segment_anything import sam_model_registry | |
from segment_anything import SamPredictor | |
import cv2 | |
import matplotlib.pyplot as plt | |
from PIL import Image | |
from torchvision.utils import draw_bounding_boxes | |
from torchvision.utils import draw_segmentation_masks | |
def load_model_hf(repo_id, filename, ckpt_config_filename, device='cpu'): | |
''' | |
Loads model from hugging face, we use it to get grounding dino model checkpoints | |
''' | |
cache_config_file = hf_hub_download(repo_id=repo_id, filename=ckpt_config_filename) | |
args = SLConfig.fromfile(cache_config_file) | |
model = build_model(args) | |
args.device = device | |
cache_file = hf_hub_download(repo_id=repo_id, filename=filename) | |
checkpoint = torch.load(cache_file, map_location='cpu') | |
log = model.load_state_dict(clean_state_dict(checkpoint['model']), strict=False) | |
model.eval() | |
return model | |
def transform_image(image) -> torch.Tensor: | |
transform = T.Compose([ | |
# T.RandomResize([800], max_size=1333), | |
T.ToTensor(), | |
# T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), | |
]) | |
image_transformed, _ = transform(image, None) | |
return image_transformed | |
class CFG: | |
''' | |
Defines variables used in our code | |
''' | |
sam_type = "vit_h" | |
SAM_MODELS = { | |
"vit_h": "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth", | |
"vit_l": "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_l_0b3195.pth", | |
"vit_b": "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_b_01ec64.pth" | |
} | |
device = 'cuda' | |
ckpt_repo_id = "ShilongLiu/GroundingDINO" | |
ckpt_filename = "groundingdino_swinb_cogcoor.pth" | |
ckpt_config_filename = "GroundingDINO_SwinB.cfg.py" | |
# image_path = os.path.join(os.getcwd(), 'fruits.jpg') | |
# image_path = '/kaggle/input/avataar/wall hanging.jpg' | |
# text_prompt = 'chair' | |
'''Build models''' | |
def build_sam(): | |
checkpoint_url = CFG.SAM_MODELS[CFG.sam_type] | |
sam = sam_model_registry[CFG.sam_type]() | |
state_dict = torch.hub.load_state_dict_from_url(checkpoint_url) | |
sam.load_state_dict(state_dict, strict=True) | |
sam.to(device = CFG.device) | |
sam = SamPredictor(sam) | |
return sam | |
def build_groundingdino(): | |
ckpt_repo_id = CFG.ckpt_repo_id | |
ckpt_filename = CFG.ckpt_filename | |
ckpt_config_filename = CFG.ckpt_config_filename | |
groundingdino = load_model_hf(ckpt_repo_id, ckpt_filename, ckpt_config_filename) | |
return groundingdino | |
model_sam = build_sam() | |
model_groundingdino = build_groundingdino() | |
'''Predictions''' | |
def predict_dino(image_pil, text_prompt, box_threshold, text_threshold): | |
image_trans = transform_image(image_pil) | |
boxes, logits, phrases = predict(model = model_groundingdino, | |
image = image_trans, | |
caption = text_prompt, | |
box_threshold = box_threshold, | |
text_threshold = text_threshold, | |
device = CFG.device) | |
W, H = image_pil.size | |
boxes = box_ops.box_cxcywh_to_xyxy(boxes) * torch.Tensor([W, H, W, H]) # center cood to corner cood | |
return boxes, logits, phrases | |
def predict_sam(image_pil, boxes): | |
image_array = np.asarray(image_pil) | |
model_sam.set_image(image_array) | |
transformed_boxes = model_sam.transform.apply_boxes_torch(boxes, image_array.shape[:2]) | |
masks, _, _ = model_sam.predict_torch( | |
point_coords=None, | |
point_labels=None, | |
boxes=transformed_boxes.to(model_sam.device), | |
multimask_output=False, | |
) | |
return masks.cpu() | |
def mask_predict(image_pil, text_prompt, box_threshold=0.3, text_threshold=0.25): | |
boxes, logits, phrases = predict_dino(image_pil, text_prompt, box_threshold, text_threshold) | |
masks = torch.tensor([]) | |
if len(boxes) > 0: | |
masks = predict_sam(image_pil, boxes) | |
masks = masks.squeeze(1) | |
return masks, boxes, phrases, logits | |
'''Utils''' | |
def load_image(image_path): | |
return Image.open(image_path).convert("RGB") | |
def draw_image(image_pil, masks, boxes, alpha=0.4): | |
image = np.asarray(image_pil) | |
image = torch.from_numpy(image).permute(2, 0, 1) | |
if len(masks) > 0: | |
image = draw_segmentation_masks(image, masks=masks, colors=['red'] * len(masks), alpha=alpha) | |
return image.numpy().transpose(1, 2, 0) | |
image_pil = load_image(image_path) | |
masks, boxes, phrases, logits = mask_predict(image_pil, text_prompt=text_prompt, box_threshold=0.23, text_threshold=0.25) | |
output = draw_image(image_pil, masks, boxes, alpha=0.4) | |
# torch.save(masks, 'masks.pt') | |
'''Visualise segmented results''' | |
def visualize_results(img1, img2, task): | |
fig, axes = plt.subplots(1, 2, figsize=(20, 10)) | |
axes[0].imshow(img1) | |
axes[0].set_title('Original Image') | |
axes[1].imshow(img2) | |
axes[1].set_title(f'{text_prompt} : {task}') | |
for ax in axes: | |
ax.axis('off') | |
visualize_results(image_pil, output, 'segmented') | |
x_units = 200 | |
y_units = -100 | |
# import torch | |
# import numpy as np | |
# masks = torch.load('/kaggle/input/chair-mask/masks.pt') | |
# print(masks.shape) | |
# masks | |
def main_fun(): | |
'''Get masked object and background as two separate images''' | |
mask = np.expand_dims(masks[0], axis=-1) | |
masked_object = image_pil * mask | |
background = image_pil * ~mask | |
'''Shifts image by x_units and y_units''' | |
M = np.float32([[1, 0, x_units], [0, 1, y_units]]) | |
shifted_image = cv2.warpAffine(masked_object, M, (masked_object.shape[1] , masked_object.shape[0] ), borderMode=cv2.BORDER_CONSTANT, borderValue=(0, 0, 0)) | |
masked_shifted_image = np.where(shifted_image[:, :, 0] != 0, True, False) | |
'''Load stable diffuser model at checkpoint finetuned for inpainting task''' | |
from diffusers import StableDiffusionInpaintPipeline | |
pipe = StableDiffusionInpaintPipeline.from_pretrained( | |
# "runwayml/stable-diffusion-inpainting", torch_dtype=torch.float16 | |
"stabilityai/stable-diffusion-2-inpainting",torch_dtype=torch.float16) | |
pipe.to(CFG.device) | |
# With Dilation | |
from scipy.ndimage import binary_dilation | |
structuring_element = np.ones((15, 15, 1), dtype=bool) | |
extrapolated_mask = binary_dilation(mask, structure=structuring_element) | |
mask_as_uint8 = extrapolated_mask.astype(np.uint8) * 255 | |
pil_mask = Image.fromarray(mask_as_uint8.squeeze(), mode='L').resize((1024, 1024)) | |
# pil_mask | |
# # Without Dilation | |
# pil_background = Image.fromarray(background) | |
# mask_as_uint8 = mask.astype(np.uint8) * 255 | |
# pil_mask = Image.fromarray(mask_as_uint8.squeeze(), mode='L') | |
# # pil_mask | |
'''Do inpainting on masked locations of original image''' | |
prompt = 'a photo of background' | |
inpainted_image = pipe(prompt=prompt, image=image_pil, mask_image=pil_mask).images[0] | |
# inpainted_image | |
'''Get composite of shifted object and background inpainted imaage''' | |
pil_shifted_image = Image.fromarray(shifted_image).resize(inpainted_image.size) | |
np_shifted_image = np.array(pil_shifted_image) | |
masked_shifted_image = np.where(np_shifted_image[:, :, 0] != 0, True, False) | |
masked_shifted_image = np.expand_dims(masked_shifted_image, axis=-1) | |
inpainted_shifted = np.array(inpainted_image) * ~masked_shifted_image | |
shifted_image = cv2.resize(shifted_image, inpainted_image.size) | |
output = inpainted_shifted + shifted_image | |
output = Image.fromarray(output) | |
visualize_results(image_pil, output, 'shifted') | |
inputs_image = [ | |
gr.components.Image(type="filepath", label="Input Image"), | |
] | |
outputs_image = [ | |
gr.components.Image(type="numpy", label="Output Image"), | |
] | |
interface_image = gr.Interface( | |
fn=main_fun, | |
inputs=inputs_image, | |
outputs=outputs_image, | |
title="Pothole detector", | |
# examples=path, | |
cache_examples=False, | |
) |