point-e / sampler.py
dooraven's picture
wips
d3112c8
raw
history blame
10.2 kB
"""
Helpers for sampling from a single- or multi-stage point cloud diffusion model.
"""
from typing import Any, Callable, Dict, Iterator, List, Sequence, Tuple
import torch
import torch.nn as nn
from .pc import PointCloud
from point_e.diffusion.gaussian_diffusion import GaussianDiffusion
from point_e.diffusion.k_diffusion import karras_sample_progressive
class PointCloudSampler:
"""
A wrapper around a model or stack of models that produces conditional or
unconditional sample tensors.
By default, this will load models and configs from files.
If you want to modify the sampler arguments of an existing sampler, call
with_options() or with_args().
"""
def __init__(
self,
device: torch.device,
models: Sequence[nn.Module],
diffusions: Sequence[GaussianDiffusion],
num_points: Sequence[int],
aux_channels: Sequence[str],
model_kwargs_key_filter: Sequence[str] = ("*",),
guidance_scale: Sequence[float] = (3.0, 3.0),
clip_denoised: bool = True,
use_karras: Sequence[bool] = (True, True),
karras_steps: Sequence[int] = (64, 64),
sigma_min: Sequence[float] = (1e-3, 1e-3),
sigma_max: Sequence[float] = (120, 160),
s_churn: Sequence[float] = (3, 0),
):
n = len(models)
assert n > 0
if n > 1:
if len(guidance_scale) == 1:
# Don't guide the upsamplers by default.
guidance_scale = list(guidance_scale) + [1.0] * (n - 1)
if len(use_karras) == 1:
use_karras = use_karras * n
if len(karras_steps) == 1:
karras_steps = karras_steps * n
if len(sigma_min) == 1:
sigma_min = sigma_min * n
if len(sigma_max) == 1:
sigma_max = sigma_max * n
if len(s_churn) == 1:
s_churn = s_churn * n
if len(model_kwargs_key_filter) == 1:
model_kwargs_key_filter = model_kwargs_key_filter * n
if len(model_kwargs_key_filter) == 0:
model_kwargs_key_filter = ["*"] * n
assert len(guidance_scale) == n
assert len(use_karras) == n
assert len(karras_steps) == n
assert len(sigma_min) == n
assert len(sigma_max) == n
assert len(s_churn) == n
assert len(model_kwargs_key_filter) == n
self.device = device
self.num_points = num_points
self.aux_channels = aux_channels
self.model_kwargs_key_filter = model_kwargs_key_filter
self.guidance_scale = guidance_scale
self.clip_denoised = clip_denoised
self.use_karras = use_karras
self.karras_steps = karras_steps
self.sigma_min = sigma_min
self.sigma_max = sigma_max
self.s_churn = s_churn
self.models = models
self.diffusions = diffusions
@property
def num_stages(self) -> int:
return len(self.models)
def sample_batch(self, batch_size: int, model_kwargs: Dict[str, Any]) -> torch.Tensor:
samples = None
for x in self.sample_batch_progressive(batch_size, model_kwargs):
samples = x
return samples
def sample_batch_progressive(
self, batch_size: int, model_kwargs: Dict[str, Any]
) -> Iterator[torch.Tensor]:
samples = None
for (
model,
diffusion,
stage_num_points,
stage_guidance_scale,
stage_use_karras,
stage_karras_steps,
stage_sigma_min,
stage_sigma_max,
stage_s_churn,
stage_key_filter,
) in zip(
self.models,
self.diffusions,
self.num_points,
self.guidance_scale,
self.use_karras,
self.karras_steps,
self.sigma_min,
self.sigma_max,
self.s_churn,
self.model_kwargs_key_filter,
):
stage_model_kwargs = model_kwargs.copy()
if stage_key_filter != "*":
use_keys = set(stage_key_filter.split(","))
stage_model_kwargs = {k: v for k, v in stage_model_kwargs.items() if k in use_keys}
if samples is not None:
stage_model_kwargs["low_res"] = samples
if hasattr(model, "cached_model_kwargs"):
stage_model_kwargs = model.cached_model_kwargs(batch_size, stage_model_kwargs)
sample_shape = (batch_size, 3 + len(self.aux_channels), stage_num_points)
if stage_guidance_scale != 1 and stage_guidance_scale != 0:
for k, v in stage_model_kwargs.copy().items():
stage_model_kwargs[k] = torch.cat([v, torch.zeros_like(v)], dim=0)
if stage_use_karras:
samples_it = karras_sample_progressive(
diffusion=diffusion,
model=model,
shape=sample_shape,
steps=stage_karras_steps,
clip_denoised=self.clip_denoised,
model_kwargs=stage_model_kwargs,
device=self.device,
sigma_min=stage_sigma_min,
sigma_max=stage_sigma_max,
s_churn=stage_s_churn,
guidance_scale=stage_guidance_scale,
)
else:
internal_batch_size = batch_size
if stage_guidance_scale:
model = self._uncond_guide_model(model, stage_guidance_scale)
internal_batch_size *= 2
samples_it = diffusion.p_sample_loop_progressive(
model,
shape=(internal_batch_size, *sample_shape[1:]),
model_kwargs=stage_model_kwargs,
device=self.device,
clip_denoised=self.clip_denoised,
)
for x in samples_it:
samples = x["pred_xstart"][:batch_size]
if "low_res" in stage_model_kwargs:
samples = torch.cat(
[stage_model_kwargs["low_res"][: len(samples)], samples], dim=-1
)
yield samples
@classmethod
def combine(cls, *samplers: "PointCloudSampler") -> "PointCloudSampler":
assert all(x.device == samplers[0].device for x in samplers[1:])
assert all(x.aux_channels == samplers[0].aux_channels for x in samplers[1:])
assert all(x.clip_denoised == samplers[0].clip_denoised for x in samplers[1:])
return cls(
device=samplers[0].device,
models=[x for y in samplers for x in y.models],
diffusions=[x for y in samplers for x in y.diffusions],
num_points=[x for y in samplers for x in y.num_points],
aux_channels=samplers[0].aux_channels,
model_kwargs_key_filter=[x for y in samplers for x in y.model_kwargs_key_filter],
guidance_scale=[x for y in samplers for x in y.guidance_scale],
clip_denoised=samplers[0].clip_denoised,
use_karras=[x for y in samplers for x in y.use_karras],
karras_steps=[x for y in samplers for x in y.karras_steps],
sigma_min=[x for y in samplers for x in y.sigma_min],
sigma_max=[x for y in samplers for x in y.sigma_max],
s_churn=[x for y in samplers for x in y.s_churn],
)
def _uncond_guide_model(
self, model: Callable[..., torch.Tensor], scale: float
) -> Callable[..., torch.Tensor]:
def model_fn(x_t, ts, **kwargs):
half = x_t[: len(x_t) // 2]
combined = torch.cat([half, half], dim=0)
model_out = model(combined, ts, **kwargs)
eps, rest = model_out[:, :3], model_out[:, 3:]
cond_eps, uncond_eps = torch.chunk(eps, 2, dim=0)
half_eps = uncond_eps + scale * (cond_eps - uncond_eps)
eps = torch.cat([half_eps, half_eps], dim=0)
return torch.cat([eps, rest], dim=1)
return model_fn
def split_model_output(
self,
output: torch.Tensor,
rescale_colors: bool = False,
) -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]:
assert (
len(self.aux_channels) + 3 == output.shape[1]
), "there must be three spatial channels before aux"
pos, joined_aux = output[:, :3], output[:, 3:]
aux = {}
for i, name in enumerate(self.aux_channels):
v = joined_aux[:, i]
if name in {"R", "G", "B", "A"}:
v = v.clamp(0, 255).round()
if rescale_colors:
v = v / 255.0
aux[name] = v
return pos, aux
def output_to_point_clouds(self, output: torch.Tensor) -> List[PointCloud]:
res = []
for sample in output:
xyz, aux = self.split_model_output(sample[None], rescale_colors=True)
res.append(
PointCloud(
coords=xyz[0].t().cpu().numpy(),
channels={k: v[0].cpu().numpy() for k, v in aux.items()},
)
)
return res
def with_options(
self,
guidance_scale: float,
clip_denoised: bool,
use_karras: Sequence[bool] = (True, True),
karras_steps: Sequence[int] = (64, 64),
sigma_min: Sequence[float] = (1e-3, 1e-3),
sigma_max: Sequence[float] = (120, 160),
s_churn: Sequence[float] = (3, 0),
) -> "PointCloudSampler":
return PointCloudSampler(
device=self.device,
models=self.models,
diffusions=self.diffusions,
num_points=self.num_points,
aux_channels=self.aux_channels,
model_kwargs_key_filter=self.model_kwargs_key_filter,
guidance_scale=guidance_scale,
clip_denoised=clip_denoised,
use_karras=use_karras,
karras_steps=karras_steps,
sigma_min=sigma_min,
sigma_max=sigma_max,
s_churn=s_churn,
)