yolov3_object_detection / src /model_yolov3.py
nkanungo's picture
Upload 15 files
e3f3c34
"""Implementation of YOLOv3 architecture."""
from typing import Any, List
import torch
import torch.nn as nn
import torch
from pytorch_lightning import LightningModule, Trainer
from torch import nn
from torch.nn import functional as F
from torch.utils.data import DataLoader, random_split
import torchvision
from pytorch_lightning.callbacks import LearningRateMonitor
from pytorch_lightning.callbacks.progress import TQDMProgressBar
from pytorch_lightning.loggers import CSVLogger
from pytorch_lightning.callbacks import ModelCheckpoint
import pandas as pd
from torch.optim.lr_scheduler import OneCycleLR
"""
Information about architecture config:
Tuple is structured by (filters, kernel_size, stride)
Every conv is a same convolution.
List is structured by "B" indicating a residual block followed by the number of repeats
"S" is for scale prediction block and computing the yolo loss
"U" is for upsampling the feature map and concatenating with a previous layer
"""
config = [
(32, 3, 1),
(64, 3, 2),
["B", 1],
(128, 3, 2),
["B", 2],
(256, 3, 2),
["B", 8],
(512, 3, 2),
["B", 8],
(1024, 3, 2),
["B", 4], # To this point is Darknet-53
(512, 1, 1),
(1024, 3, 1),
"S",
(256, 1, 1),
"U",
(256, 1, 1),
(512, 3, 1),
"S",
(128, 1, 1),
"U",
(128, 1, 1),
(256, 3, 1),
"S",
]
class CNNBlock(nn.Module):
def __init__(self, in_channels, out_channels, bn_act=True, **kwargs):
super().__init__()
self.conv = nn.Conv2d(in_channels, out_channels, bias=not bn_act, **kwargs)
self.bn = nn.BatchNorm2d(out_channels)
self.leaky = nn.LeakyReLU(0.1)
self.use_bn_act = bn_act
def forward(self, x):
if self.use_bn_act:
return self.leaky(self.bn(self.conv(x)))
else:
return self.conv(x)
class ResidualBlock(nn.Module):
def __init__(self, channels, use_residual=True, num_repeats=1):
super().__init__()
self.layers = nn.ModuleList()
for repeat in range(num_repeats):
self.layers += [
nn.Sequential(
CNNBlock(channels, channels // 2, kernel_size=1),
CNNBlock(channels // 2, channels, kernel_size=3, padding=1),
)
]
self.use_residual = use_residual
self.num_repeats = num_repeats
def forward(self, x):
for layer in self.layers:
if self.use_residual:
x = x + layer(x)
else:
x = layer(x)
return x
class ScalePrediction(nn.Module):
def __init__(self, in_channels, num_classes):
super().__init__()
self.pred = nn.Sequential(
CNNBlock(in_channels, 2 * in_channels, kernel_size=3, padding=1),
CNNBlock(2 * in_channels, (num_classes + 5) * 3, bn_act=False, kernel_size=1),
)
self.num_classes = num_classes
def forward(self, x):
return (
self.pred(x)
.reshape(x.shape[0], 3, self.num_classes + 5, x.shape[2], x.shape[3])
.permute(0, 1, 3, 4, 2)
)
class YOLOv3(nn.Module):
def __init__(self, load_config: List[Any] = config, in_channels=3, num_classes=80):
super().__init__()
self.load_config = load_config
self.num_classes = num_classes
self.in_channels = in_channels
self.layers = self._create_conv_layers()
def forward(self, x):
outputs = [] # for each scale
route_connections = []
for layer in self.layers:
if isinstance(layer, ScalePrediction):
outputs.append(layer(x))
continue
x = layer(x)
if isinstance(layer, ResidualBlock) and layer.num_repeats == 8:
route_connections.append(x)
elif isinstance(layer, nn.Upsample):
x = torch.cat([x, route_connections[-1]], dim=1)
route_connections.pop()
return outputs
def _create_conv_layers(self):
layers = nn.ModuleList()
in_channels = self.in_channels
for module in self.load_config:
if isinstance(module, tuple):
out_channels, kernel_size, stride = module
layers.append(
CNNBlock(
in_channels,
out_channels,
kernel_size=kernel_size,
stride=stride,
padding=1 if kernel_size == 3 else 0,
)
)
in_channels = out_channels
elif isinstance(module, list):
num_repeats = module[1]
layers.append(
ResidualBlock(
in_channels,
num_repeats=num_repeats,
)
)
elif isinstance(module, str):
if module == "S":
layers += [
ResidualBlock(in_channels, use_residual=False, num_repeats=1),
CNNBlock(in_channels, in_channels // 2, kernel_size=1),
ScalePrediction(in_channels // 2, num_classes=self.num_classes),
]
in_channels = in_channels // 2
elif module == "U":
layers.append(
nn.Upsample(scale_factor=2),
)
in_channels = in_channels * 3
return layers
class Assignment13(LightningModule):
def __init__(self):
super().__init__()
self.save_hyperparameters()
self.epoch_number = 0
self.config = config
self.train_csv_path = self.config.DATASET + "/train.csv"
self.test_csv_path = self.config.DATASET + "/test.csv"
self.train_loader, self.test_loader, self.train_eval_loader = get_loaders(
train_csv_path=self.train_csv_path, test_csv_path=self.test_csv_path)
self.check_class_accuracy = check_class_accuracy
self.model = YOLOv3(num_classes=self.config.NUM_CLASSES)
self.loss_fn = YoloLoss()
self.check_class_accuracy = check_class_accuracy
self.get_evaluation_bboxes = get_evaluation_bboxes
self.scaled_anchors = (torch.tensor(self.config.ANCHORS) * torch.tensor(self.config.S).unsqueeze(1).unsqueeze(1).repeat(1, 3, 2))
self.losses = []
self.plot_couple_examples = plot_couple_examples
self.mean_average_precision = mean_average_precision
self.EPOCHS = self.config.NUM_EPOCHS * 2 // 5
def forward(self, x):
out = self.model(x)
return out
def training_step(self, batch, batch_idx):
x, y = batch
out = self(x)
y0, y1, y2 = (y[0],y[1],y[2])
loss = (
self.loss_fn(out[0], y0, self.scaled_anchors[0].to(y0))
+ self.loss_fn(out[1], y1, self.scaled_anchors[1].to(y1))
+ self.loss_fn(out[2], y2, self.scaled_anchors[2].to(y2))
)
self.losses.append(loss.item())
mean_loss = sum(self.losses) / len(self.losses)
self.log("train_loss", mean_loss, on_step=True, on_epoch=True, prog_bar=True, logger=True)
#self.log("train_loss", mean_loss)
return loss
def on_train_epoch_start(self):
self.epoch_number += 1
self.losses = []
#self.plot_couple_examples(self.model,self.test_loader,0.6,0.5,self.scaled_anchors)
if self.epoch_number > 1 and self.epoch_number % 10 == 0:
self.plot_couple_examples(self.model,self.test_loader,0.6,0.5,self.scaled_anchors)
def on_train_epoch_end(self):
print(f"Currently epoch {self.epoch_number}")
print("On Train Eval loader:")
print("On Train loader:")
self.check_class_accuracy(self.model, self.train_loader, threshold=self.config.CONF_THRESHOLD)
if self.epoch_number == self.EPOCHS:
#if self.epoch_number > 1 and self.epoch_number % 3 == 0:
self.check_class_accuracy(self.model, self.test_loader, threshold=self.config.CONF_THRESHOLD)
pred_boxes, true_boxes = self.get_evaluation_bboxes( self.test_loader,self.model,iou_threshold=self.config.NMS_IOU_THRESH,
anchors=self.config.ANCHORS,
threshold=self.config.CONF_THRESHOLD,)
mapval = self.mean_average_precision(
pred_boxes,
true_boxes,
iou_threshold=self.config.MAP_IOU_THRESH,
box_format="midpoint",
num_classes=self.config.NUM_CLASSES,
)
print(f"MAP: {mapval.item()}")
self.model.train()
pass
def configure_optimizers(self):
optimizer = optimizer = optim.Adam(
model.parameters(), lr=config.LEARNING_RATE, weight_decay=config.WEIGHT_DECAY)
#EPOCHS = config.NUM_EPOCHS * 2 // 5
scheduler = OneCycleLR(
optimizer,
max_lr=1E-3,
steps_per_epoch=len(self.train_loader),
epochs=self.EPOCHS,
pct_start=5/self.EPOCHS,
div_factor=100,
three_phase=False,
final_div_factor=100,
anneal_strategy='linear'
)
return {"optimizer": optimizer, "lr_scheduler":scheduler}
####################
# DATA RELATED HOOKS
####################
def train_dataloader(self):
return self.train_loader
def test_dataloader(self):
return self.test_loader
if __name__ == "__main__":
num_classes = 20
IMAGE_SIZE = 416
model = YOLOv3(load_config=config, num_classes=num_classes)
x = torch.randn((2, 3, IMAGE_SIZE, IMAGE_SIZE))
out = model(x)
assert out[0].shape == (2, 3, IMAGE_SIZE // 32, IMAGE_SIZE // 32, num_classes + 5)
assert out[1].shape == (2, 3, IMAGE_SIZE // 16, IMAGE_SIZE // 16, num_classes + 5)
assert out[2].shape == (2, 3, IMAGE_SIZE // 8, IMAGE_SIZE // 8, num_classes + 5)
print("Success!")