nishantguvvada commited on
Commit
ddf3da3
·
1 Parent(s): 6547b74

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -7
app.py CHANGED
@@ -55,7 +55,6 @@ IMG_CHANNELS = 3
55
  ATTENTION_DIM = 512 # size of dense layer in Attention
56
  VOCAB_SIZE = 20000
57
 
58
-
59
  # We will override the default standardization of TextVectorization to preserve
60
  # "<>" characters, so we preserve the tokens for the <start> and <end>.
61
  def standardize(inputs):
@@ -64,7 +63,6 @@ def standardize(inputs):
64
  inputs, r"[!\"#$%&\(\)\*\+.,-/:;=?@\[\\\]^_`{|}~]?", ""
65
  )
66
 
67
-
68
  # Choose the most frequent words from the vocabulary & remove punctuation etc.
69
  tokenizer = TextVectorization(
70
  max_tokens=VOCAB_SIZE,
@@ -77,11 +75,6 @@ word_to_index = StringLookup(
77
  mask_token="", vocabulary=tokenizer.get_vocabulary()
78
  )
79
 
80
- # Lookup table: Index -> Word
81
- index_to_word = StringLookup(
82
- mask_token="", vocabulary=tokenizer.get_vocabulary(), invert=True
83
- )
84
-
85
 
86
  ## Probabilistic prediction using the trained model
87
  def predict_caption(file):
 
55
  ATTENTION_DIM = 512 # size of dense layer in Attention
56
  VOCAB_SIZE = 20000
57
 
 
58
  # We will override the default standardization of TextVectorization to preserve
59
  # "<>" characters, so we preserve the tokens for the <start> and <end>.
60
  def standardize(inputs):
 
63
  inputs, r"[!\"#$%&\(\)\*\+.,-/:;=?@\[\\\]^_`{|}~]?", ""
64
  )
65
 
 
66
  # Choose the most frequent words from the vocabulary & remove punctuation etc.
67
  tokenizer = TextVectorization(
68
  max_tokens=VOCAB_SIZE,
 
75
  mask_token="", vocabulary=tokenizer.get_vocabulary()
76
  )
77
 
 
 
 
 
 
78
 
79
  ## Probabilistic prediction using the trained model
80
  def predict_caption(file):