nishantguvvada commited on
Commit
6547b74
1 Parent(s): 6534f94

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -30
app.py CHANGED
@@ -85,9 +85,10 @@ index_to_word = StringLookup(
85
 
86
  ## Probabilistic prediction using the trained model
87
  def predict_caption(file):
 
88
  gru_state = tf.zeros((1, ATTENTION_DIM))
89
 
90
- img = tf.image.decode_jpeg(tf.io.read_file(filename), channels=IMG_CHANNELS)
91
  img = tf.image.resize(img, (IMG_HEIGHT, IMG_WIDTH))
92
  img = img / 255
93
 
@@ -117,38 +118,15 @@ def predict_caption(file):
117
 
118
  return img, result
119
 
120
-
121
- filename = "../sample_images/surf.jpeg" # you can also try surf.jpeg
122
-
123
- for i in range(5):
124
- image, caption = predict_caption(filename)
125
- print(" ".join(caption[:-1]) + ".")
126
-
127
- img = tf.image.decode_jpeg(tf.io.read_file(filename), channels=IMG_CHANNELS)
128
- plt.imshow(img)
129
- plt.axis("off")
130
-
131
-
132
- filename = np.array(Image.open(file).convert('RGB'))
133
-
134
- def model_prediction(path):
135
- resize = tf.image.resize(path, (256,256))
136
- with st.spinner('Model is being loaded..'):
137
- model=load_image_model()
138
- yhat = model.predict(np.expand_dims(resize/255, 0))
139
- return yhat
140
-
141
  def on_click():
142
  if file is None:
143
  st.text("Please upload an image file")
144
  else:
145
  image = Image.open(file)
146
  st.image(image, use_column_width=True)
147
- image = image.convert('RGB')
148
- predictions = model_prediction(np.array(image))
149
- if (predictions>0.5):
150
- st.write("""# Prediction : Implant is loose""")
151
- else:
152
- st.write("""# Prediction : Implant is in control""")
153
-
154
- st.button('Predict', on_click=on_click)
 
85
 
86
  ## Probabilistic prediction using the trained model
87
  def predict_caption(file):
88
+ filename = Image.open(file)
89
  gru_state = tf.zeros((1, ATTENTION_DIM))
90
 
91
+ img = tf.image.decode_jpeg(filename, channels=IMG_CHANNELS)
92
  img = tf.image.resize(img, (IMG_HEIGHT, IMG_WIDTH))
93
  img = img / 255
94
 
 
118
 
119
  return img, result
120
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
121
  def on_click():
122
  if file is None:
123
  st.text("Please upload an image file")
124
  else:
125
  image = Image.open(file)
126
  st.image(image, use_column_width=True)
127
+ for i in range(5):
128
+ image, caption = predict_caption(file)
129
+ #print(" ".join(caption[:-1]) + ".")
130
+ st.write(" ".join(caption[:-1]) + ".")
131
+
132
+ st.button('Generate', on_click=on_click)