Spaces:
Runtime error
Runtime error
import os | |
import gradio as gr | |
import re | |
import torch | |
import cv2 | |
import numpy as np | |
from PIL import Image | |
from transformers import DonutProcessor, VisionEncoderDecoderModel | |
title = "OCR using Donut" | |
description = """ | |
This demo application uses `naver-clova-ix/donut-base` model to extract text from images. | |
""" | |
article = "Check out [naver-clova-ix/donut-base](https://huggingface.co/naver-clova-ix/donut-base) documentation that this demo is based off of." | |
checkpoint = "naver-clova-ix/donut-base" | |
processor = DonutProcessor.from_pretrained(checkpoint) | |
model = VisionEncoderDecoderModel.from_pretrained(checkpoint) | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
model.to(device) | |
# prepare decoder inputs | |
task_prompt = "<s_synthdog>" | |
decoder_input_ids = processor.tokenizer( | |
task_prompt, add_special_tokens=False, return_tensors="pt" | |
).input_ids | |
def convert_image_GRAY2BGR(image): | |
if len(np.asarray(image).shape) != 3: | |
image = cv2.cvtColor(np.array(image), cv2.COLOR_GRAY2BGR) | |
image = Image.fromarray(np.uint8(image)) | |
return image | |
def predict(image): | |
image = convert_image_GRAY2BGR(image) | |
pixel_values = processor(image, return_tensors="pt").pixel_values | |
outputs = model.generate( | |
pixel_values.to(device), | |
decoder_input_ids=decoder_input_ids.to(device), | |
max_length=model.decoder.config.max_position_embeddings, | |
early_stopping=True, | |
pad_token_id=processor.tokenizer.pad_token_id, | |
eos_token_id=processor.tokenizer.eos_token_id, | |
use_cache=True, | |
num_beams=1, | |
bad_words_ids=[[processor.tokenizer.unk_token_id]], | |
return_dict_in_generate=True, | |
) | |
sequence = processor.batch_decode(outputs.sequences)[0] | |
sequence = sequence.replace(processor.tokenizer.eos_token, "").replace( | |
processor.tokenizer.pad_token, "" | |
) | |
sequence = re.sub( | |
r"<.*?>", "", sequence, count=1 | |
).strip() # remove first task start token | |
return processor.token2json(sequence)["text_sequence"] | |
# We instantiate the Textbox class | |
input_textbox = gr.Textbox( | |
label="Type your prompt here:", placeholder="John Doe", lines=2 | |
) | |
gr.Interface( | |
fn=predict, | |
inputs="image", | |
outputs="text", | |
title=title, | |
description=description, | |
article=article, | |
examples=[ | |
os.path.join(os.path.dirname(__file__), "../data/sample/sample-1.png"), | |
os.path.join(os.path.dirname(__file__), "../data/sample/lorem_ipsum.png"), | |
], | |
).launch() | |