Spaces:
Runtime error
Runtime error
Nikhil Agarwal
commited on
Commit
•
cd33cdc
1
Parent(s):
71b21e9
Add application file
Browse files
app.py
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import gradio as gr
|
3 |
+
import re
|
4 |
+
import torch
|
5 |
+
import cv2
|
6 |
+
import numpy as np
|
7 |
+
|
8 |
+
from PIL import Image
|
9 |
+
from transformers import DonutProcessor, VisionEncoderDecoderModel
|
10 |
+
|
11 |
+
title = "OCR using Donut"
|
12 |
+
description = """
|
13 |
+
This demo application uses `naver-clova-ix/donut-base` model to extract text from images.
|
14 |
+
"""
|
15 |
+
article = "Check out [naver-clova-ix/donut-base](https://huggingface.co/naver-clova-ix/donut-base) documentation that this demo is based off of."
|
16 |
+
|
17 |
+
checkpoint = "naver-clova-ix/donut-base"
|
18 |
+
|
19 |
+
processor = DonutProcessor.from_pretrained(checkpoint)
|
20 |
+
model = VisionEncoderDecoderModel.from_pretrained(checkpoint)
|
21 |
+
|
22 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
23 |
+
model.to(device)
|
24 |
+
|
25 |
+
# prepare decoder inputs
|
26 |
+
task_prompt = "<s_synthdog>"
|
27 |
+
decoder_input_ids = processor.tokenizer(
|
28 |
+
task_prompt, add_special_tokens=False, return_tensors="pt"
|
29 |
+
).input_ids
|
30 |
+
|
31 |
+
|
32 |
+
def convert_image_GRAY2BGR(image):
|
33 |
+
if len(np.asarray(image).shape) != 3:
|
34 |
+
image = cv2.cvtColor(np.array(image), cv2.COLOR_GRAY2BGR)
|
35 |
+
image = Image.fromarray(np.uint8(image))
|
36 |
+
return image
|
37 |
+
|
38 |
+
|
39 |
+
def predict(image):
|
40 |
+
image = convert_image_GRAY2BGR(image)
|
41 |
+
pixel_values = processor(image, return_tensors="pt").pixel_values
|
42 |
+
|
43 |
+
outputs = model.generate(
|
44 |
+
pixel_values.to(device),
|
45 |
+
decoder_input_ids=decoder_input_ids.to(device),
|
46 |
+
max_length=model.decoder.config.max_position_embeddings,
|
47 |
+
early_stopping=True,
|
48 |
+
pad_token_id=processor.tokenizer.pad_token_id,
|
49 |
+
eos_token_id=processor.tokenizer.eos_token_id,
|
50 |
+
use_cache=True,
|
51 |
+
num_beams=1,
|
52 |
+
bad_words_ids=[[processor.tokenizer.unk_token_id]],
|
53 |
+
return_dict_in_generate=True,
|
54 |
+
)
|
55 |
+
|
56 |
+
sequence = processor.batch_decode(outputs.sequences)[0]
|
57 |
+
sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(
|
58 |
+
processor.tokenizer.pad_token, ""
|
59 |
+
)
|
60 |
+
sequence = re.sub(
|
61 |
+
r"<.*?>", "", sequence, count=1
|
62 |
+
).strip() # remove first task start token
|
63 |
+
return processor.token2json(sequence)["text_sequence"]
|
64 |
+
|
65 |
+
|
66 |
+
# We instantiate the Textbox class
|
67 |
+
input_textbox = gr.Textbox(
|
68 |
+
label="Type your prompt here:", placeholder="John Doe", lines=2
|
69 |
+
)
|
70 |
+
|
71 |
+
gr.Interface(
|
72 |
+
fn=predict,
|
73 |
+
inputs="image",
|
74 |
+
outputs="text",
|
75 |
+
title=title,
|
76 |
+
description=description,
|
77 |
+
article=article,
|
78 |
+
examples=[
|
79 |
+
os.path.join(os.path.dirname(__file__), "../data/sample/sample-1.png"),
|
80 |
+
os.path.join(os.path.dirname(__file__), "../data/sample/lorem_ipsum.png"),
|
81 |
+
],
|
82 |
+
).launch()
|