Spaces:
Running
Running
""" | |
UNet model definition for lane segmentation. | |
Includes DoubleConv block and UNet architecture. | |
""" | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
# --- DoubleConv Block --- | |
class DoubleConv(nn.Module): | |
""" | |
(Conv => BN => ReLU) * 2 block used in UNet encoder/decoder. | |
Args: | |
in_channels: Number of input channels | |
out_channels: Number of output channels | |
""" | |
def __init__(self, in_channels: int, out_channels: int): | |
""" | |
Args: | |
in_channels (int): Number of input channels | |
out_channels (int): Number of output channels | |
""" | |
super().__init__() | |
self.double_conv = nn.Sequential( | |
nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1), | |
nn.BatchNorm2d(out_channels), | |
nn.ReLU(inplace=True), | |
nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1), | |
nn.BatchNorm2d(out_channels), | |
nn.ReLU(inplace=True) | |
) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
""" | |
Forward pass for DoubleConv block. | |
Args: | |
x (torch.Tensor): Input tensor | |
Returns: | |
torch.Tensor: Output tensor | |
""" | |
return self.double_conv(x) | |
# --- UNet Model --- | |
class UNet(nn.Module): | |
""" | |
U-Net: Convolutional Networks for Biomedical Image Segmentation | |
Args: | |
in_channels: Number of input channels | |
out_channels: Number of output channels | |
""" | |
def __init__(self, in_channels: int = 3, out_channels: int = 1): | |
""" | |
Args: | |
in_channels (int): Number of input channels | |
out_channels (int): Number of output channels | |
""" | |
super().__init__() | |
self.encoder1 = DoubleConv(in_channels, 64) | |
self.pool1 = nn.MaxPool2d(kernel_size=2) | |
self.encoder2 = DoubleConv(64, 128) | |
self.pool2 = nn.MaxPool2d(kernel_size=2) | |
self.encoder3 = DoubleConv(128, 256) | |
self.pool3 = nn.MaxPool2d(kernel_size=2) | |
self.encoder4 = DoubleConv(256, 512) | |
self.pool4 = nn.MaxPool2d(kernel_size=2) | |
self.bottleneck = DoubleConv(512, 1024) | |
self.upconv4 = nn.ConvTranspose2d(1024, 512, kernel_size=2, stride=2) | |
self.decoder4 = DoubleConv(1024, 512) | |
self.upconv3 = nn.ConvTranspose2d(512, 256, kernel_size=2, stride=2) | |
self.decoder3 = DoubleConv(512, 256) | |
self.upconv2 = nn.ConvTranspose2d(256, 128, kernel_size=2, stride=2) | |
self.decoder2 = DoubleConv(256, 128) | |
self.upconv1 = nn.ConvTranspose2d(128, 64, kernel_size=2, stride=2) | |
self.decoder1 = DoubleConv(128, 64) | |
self.final_conv = nn.Conv2d(64, out_channels, kernel_size=1) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
""" | |
Forward pass for UNet model. | |
Args: | |
x (torch.Tensor): Input tensor | |
Returns: | |
torch.Tensor: Output tensor | |
""" | |
""" | |
Forward pass of UNet. | |
Args: | |
x: Input tensor of shape (B, C, H, W) | |
Returns: | |
Output tensor of shape (B, out_channels, H, W) | |
""" | |
enc1 = self.encoder1(x) | |
enc2 = self.encoder2(self.pool1(enc1)) | |
enc3 = self.encoder3(self.pool2(enc2)) | |
enc4 = self.encoder4(self.pool3(enc3)) | |
bottleneck = self.bottleneck(self.pool4(enc4)) | |
dec4 = self.upconv4(bottleneck) | |
dec4 = torch.cat([dec4, enc4], dim=1) | |
dec4 = self.decoder4(dec4) | |
dec3 = self.upconv3(dec4) | |
dec3 = torch.cat([dec3, enc3], dim=1) | |
dec3 = self.decoder3(dec3) | |
dec2 = self.upconv2(dec3) | |
dec2 = torch.cat([dec2, enc2], dim=1) | |
dec2 = self.decoder2(dec2) | |
dec1 = self.upconv1(dec2) | |
dec1 = torch.cat([dec1, enc1], dim=1) | |
dec1 = self.decoder1(dec1) | |
out = self.final_conv(dec1) | |
return torch.sigmoid(out) | |
# --- Model Summary and FLOPs (Optional) --- | |
if __name__ == "__main__": | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model = UNet(in_channels=3, out_channels=1).to(device) | |
dummy_input = torch.randn(1, 3, 256, 256).to(device) | |
output = model(dummy_input) | |
print(f"Output shape: {output.shape}") | |
# Model summary | |
from torchinfo import summary | |
print(summary(model, input_size=(1, 3, 256, 256), device=device)) | |
# FLOPs and parameters | |
from thop import profile | |
flops, params = profile(model, inputs=(dummy_input,)) | |
print(f"FLOPs: {flops:,}") | |
print(f"Parameters: {params:,}") |