fintweet-GPT-Search / 01_🏠_Home.py
nickmuchi's picture
Update 01_🏠_Home.py
f17d3de
raw
history blame
5.61 kB
import streamlit as st
from variables import *
from optimum.onnxruntime import ORTModelForSequenceClassification
from transformers import pipeline, AutoTokenizer
from optimum.pipelines import pipeline
import tweepy
import pandas as pd
import numpy as np
import plotly_express as px
import plotly.graph_objects as go
from datetime import datetime as dt
from st_aggrid import GridOptionsBuilder, AgGrid, GridUpdateMode, DataReturnMode
from datasets import Dataset
from huggingface_hub import Repository
st.sidebar.header("Sentiment Analysis Score")
extract_time = dt.strftime(dt.today(),"%d_%B_%y_%H_%M")
DATASET_REPO_URL = "https://huggingface.co/datasets/nickmuchi/fin_tweets"
DATA_FILENAME = "tweets_data.csv"
DATA_FILE = os.path.join("data", DATA_FILENAME)
tweet_file = os.path.join("tweets", DATA_FILE)
repo = Repository(
local_dir="output", clone_from=DATASET_REPO_URL
)
st.title('Live FinTwitter Sentiment & Topic Analysis with Tweepy and Transformers')
st.markdown(
"""
This app uses Tweepy to extract tweets from twitter based on a list of popular accounts that tweet about markets/finance:
- The stream of tweets is processed via HuggingFace models for finance tweet sentiment and topic analysis:
- [Topic Classification](https://huggingface.co/nickmuchi/finbert-tone-finetuned-finance-topic-classification)
- [Sentiment Analysis](https://huggingface.co/nickmuchi/finbert-tone-finetuned-fintwitter-classification)
- The resulting sentiments and corresponding tweets are displayed, with graphs tracking the live sentiment and topics of financial market tweets in the Visualisation tab.
"""
)
refresh_stream = st.button('Refresh Stream')
if "update_but" not in st.session_state:
st.session_state.update_but = False
if refresh_stream or st.session_state.update_but:
st.session_state.update_but = True
client = tweepy.Client(CONFIG['bearer_token'], wait_on_rate_limit=True)
users = []
all_tweets = []
for res in tweepy.Paginator(client.get_list_tweets,
id="1083517925049266176",
user_fields=['username'],
tweet_fields=['created_at','text'],
expansions=['author_id'],
max_results=100):
all_tweets.append(res)
with st.spinner('Generating sentiment and topic classification of tweets...'):
tweets = [response.data for response in all_tweets]
users = [response.includes['users'] for response in all_tweets]
flat_users = [x for i in users for x in i]
flat_tweets = [x for i in tweets for x in i]
data = [(tweet.data['author_id'],tweet.data['text'],tweet.data['created_at']) for tweet in flat_tweets]
df = pd.DataFrame(data,columns=['author','tweet','creation_time'])
df['tweet'] = df['tweet'].replace(r'https?://\S+', '', regex=True).replace(r'www\S+', '', regex=True)
users = client.get_users(ids=df['author'].unique().tolist())
df_users = pd.DataFrame(data=list(set([(user.id,user.username) for user in users.data])),columns=['author','username'])
df_tweets = process_tweets(df,df_users)
#appending the new dataframe to csv
df_tweets.to_csv(tweet_file, mode='a', header=False, index=False)
current_commit = repo.push_to_hub()
print(current_commit)
# Get all tweets
tweet_list = df_tweets['tweet'].tolist()
st.session_state['tlist'] =tweet_list
st.session_state['tdf'] = df_tweets
with st.container():
st.write("Table of Influential FinTweets")
gb = GridOptionsBuilder.from_dataframe(df_tweets)
gb.configure_pagination(paginationPageSize=30,paginationAutoPageSize=False) #Add pagination
gb.configure_side_bar() #Add a sidebar
gb.configure_selection('multiple', use_checkbox=True, groupSelectsChildren="Group checkbox select children")
gb.configure_column('tweet',wrapText=True,autoHeight=True)#Enable multi-row selection
gridOptions = gb.build()
AgGrid(
df_tweets,
gridOptions=gridOptions,
data_return_mode='AS_INPUT',
update_mode='MODEL_CHANGED',
fit_columns_on_grid_load=False,
enable_enterprise_modules=True,
theme='streamlit', #Add theme color to the table
height=550,
width='100%'
)
## Display sentiment score
pos_perc = df_tweets[df_tweets['sentiment']=='Bullish'].count()[0]*100/df_tweets.shape[0]
neg_perc = df_tweets[df_tweets['sentiment']=='Bearish'].count()[0]*100/df_tweets.shape[0]
neu_perc = df_tweets[df_tweets['sentiment']=='Neutral'].count()[0]*100/df_tweets.shape[0]
sentiment_score = neu_perc+pos_perc-neg_perc
fig_1 = go.Figure()
fig_1.add_trace(go.Indicator(
mode = "delta",
value = sentiment_score,
domain = {'row': 1, 'column': 1}))
fig_1.update_layout(
template = {'data' : {'indicator': [{
'title': {'text': "Sentiment Score"},
'mode' : "number+delta+gauge",
'delta' : {'reference': 50}}]
}},
autosize=False,
width=250,
height=250,
margin=dict(
l=5,
r=5,
b=5,
pad=2
)
)
with st.sidebar:
st.plotly_chart(fig_1)
st.markdown("![visitor badge](https://visitor-badge.glitch.me/badge?page_id=nickmuchi-fintweet-sentiment-analysis)")