Spaces:
Runtime error
Runtime error
Create new file
Browse files
app.py
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sentence_transformers import SentenceTransformer, util, CrossEncoder
|
2 |
+
from datasets import load_dataset
|
3 |
+
import pandas as pd
|
4 |
+
from IPython.display import display
|
5 |
+
|
6 |
+
#Get the netflix dataset
|
7 |
+
netflix = load_dataset('hugginglearners/netflix-shows',use_auth_token=True)
|
8 |
+
|
9 |
+
#Filter for relevant columns and convert to pandas
|
10 |
+
netflix_df = netflix['train'].to_pandas()
|
11 |
+
netflix_df = netflix_df[['type','title','country','cast','release_year','rating','duration','listed_in','description']]
|
12 |
+
|
13 |
+
#load mpnet model
|
14 |
+
model = SentenceTransformer('all-mpnet-base-v2')
|
15 |
+
|
16 |
+
#load embeddings
|
17 |
+
flix_ds = load_dataset("nickmuchi/netflix-shows-mpnet-embeddings", use_auth_token=True)
|
18 |
+
dataset_embeddings = torch.from_numpy(flix_ds["train"].to_pandas().to_numpy()).to(torch.float)
|
19 |
+
|
20 |
+
#load cross-encoder for reranking
|
21 |
+
cross_encoder = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-12-v2')
|
22 |
+
|
23 |
+
#function for generating similarity of query and netflix shows
|
24 |
+
def semantic_search(query,embeddings,top_k=top_k):
|
25 |
+
'''Encode query and check similarity with embeddings'''
|
26 |
+
|
27 |
+
question_embedding = model.encode(query, convert_to_tensor=True).cpu()
|
28 |
+
hits = util.semantic_search(question_embedding, embeddings, top_k=top_k)
|
29 |
+
hits = hits[0]
|
30 |
+
|
31 |
+
##### Re-Ranking #####
|
32 |
+
# Now, score all retrieved passages with the cross_encoder
|
33 |
+
cross_inp = [[query, netflix_df['description'].iloc[hit['corpus_id']]] for hit in hits]
|
34 |
+
cross_scores = cross_encoder.predict(cross_inp)
|
35 |
+
|
36 |
+
# Sort results by the cross-encoder scores
|
37 |
+
for idx in range(len(cross_scores)):
|
38 |
+
hits[idx]['cross-score'] = cross_scores[idx]
|
39 |
+
|
40 |
+
#Bi-encoder df
|
41 |
+
hits = sorted(hits, key=lambda x: x['score'], reverse=True)
|
42 |
+
bi_df = display_df_as_table(hits,top_k)
|
43 |
+
|
44 |
+
#Cross encoder df
|
45 |
+
hits = sorted(hits, key=lambda x: x['cross-score'], reverse=True)
|
46 |
+
cross_df = display_df_as_table(hits,top_k,'cross-score')
|
47 |
+
|
48 |
+
return bi_df, cross_df
|
49 |
+
|
50 |
+
|
51 |
+
title = """<h1 id="title">Netflix Shows Semantic Search</h1>"""
|
52 |
+
|
53 |
+
description = """
|
54 |
+
Semantic Search is a way to generate search results based on the actual meaning of the query instead of a standard keyword search. I believe this way of searching provides more meaning results when trying to find a good show to watch on Netflix. For example, one could search for "Success, rags to riches story" as provided in the example below to generate shows or movies with a description that is semantically similar to the query.
|
55 |
+
|
56 |
+
- The App generates embeddings using [All-Mpnet-Base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) model from Sentence Transformers.
|
57 |
+
- The model encodes the query and the discerption field from the [Netflix-Shows](https://huggingface.co/datasets/hugginglearners/netflix-shows) dataset which contains 8800 shows and movies currently on Netflix scraped from the web using Selenium.
|
58 |
+
- Similarity scores are then generated, from highest to lowest. The user can select how many suggestions they need from the results.
|
59 |
+
- A Cross Encoder then re-ranks the top selections to further improve on the similarity scores.
|
60 |
+
- You will see 2 tables generated, one from the bi-encoder and the other from the cross encoder which further enhances the similarity score rankings
|
61 |
+
|
62 |
+
Enjoy and Search like you mean it!!
|
63 |
+
"""
|
64 |
+
example_queries = ["Success, rags to riches","murder, crime scene investigation thriller"]
|
65 |
+
|
66 |
+
twitter_link = """
|
67 |
+
[![](https://img.shields.io/twitter/follow/nickmuchi?label=@nickmuchi&style=social)](https://twitter.com/nickmuchi)
|
68 |
+
"""
|
69 |
+
|
70 |
+
css = '''
|
71 |
+
h1#title {
|
72 |
+
text-align: center;
|
73 |
+
}
|
74 |
+
'''
|
75 |
+
|
76 |
+
demo = gr.Blocks(css=css)
|
77 |
+
|
78 |
+
with demo:
|
79 |
+
gr.Markdown(title)
|
80 |
+
gr.Markdown(description)
|
81 |
+
gr.Markdown(twitter_link)
|
82 |
+
|
83 |
+
slider_input = gr.Slider(minimum=3,maximum=10,value=5,step=1,label='Number of Suggestions to Generate')
|
84 |
+
|
85 |
+
|
86 |
+
with gr.Row():
|
87 |
+
query = gr.Textbox(lines=3,label='Describe the Netflix show or movie you would like to watch..')
|
88 |
+
|
89 |
+
with gr.Row():
|
90 |
+
gr.Markdown(f'''Top-{slider_input} Bi-Encoder Retrieval hits''')
|
91 |
+
bi_output = gr.DataFrame(headers=['Similarity Score','Type','Title','Country','Cast','Release Year','Rating','Duration','Category Listing','Description'])
|
92 |
+
|
93 |
+
with gr.Row():
|
94 |
+
gr.Markdown(f'''Top-{slider_input} Cross-Encoder Re-ranker hits''')
|
95 |
+
cross_output = gr.DataFrame(headers=['Similarity Score','Type','Title','Country','Cast','Release Year','Rating','Duration','Category Listing','Description'])
|
96 |
+
|
97 |
+
with gr.Row():
|
98 |
+
example_url = gr.Examples(examples=example_queries,inputs=[query])
|
99 |
+
|
100 |
+
|
101 |
+
sem_but = gr.Button('Search')
|
102 |
+
|
103 |
+
|
104 |
+
sem_but.click(semantic_search,inputs=[query,dataset_embeddings,img_input,slider_input],outputs=[bi_output,cross_output],queue=True)
|
105 |
+
|
106 |
+
gr.Markdown("![visitor badge](https://visitor-badge.glitch.me/badge?page_id=nickmuchi-netflix-shows-semantic-search)")
|
107 |
+
|
108 |
+
|
109 |
+
demo.launch(debug=True,enable_queue=True)
|