|  | import io | 
					
						
						|  | import gradio as gr | 
					
						
						|  | import matplotlib.pyplot as plt | 
					
						
						|  | import requests, validators | 
					
						
						|  | import torch | 
					
						
						|  | import pathlib | 
					
						
						|  | from PIL import Image | 
					
						
						|  | from transformers import AutoFeatureExtractor, YolosForObjectDetection | 
					
						
						|  | import os | 
					
						
						|  |  | 
					
						
						|  | os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | COLORS = [ | 
					
						
						|  | [0.000, 0.447, 0.741], | 
					
						
						|  | [0.850, 0.325, 0.098], | 
					
						
						|  | [0.929, 0.694, 0.125], | 
					
						
						|  | [0.494, 0.184, 0.556], | 
					
						
						|  | [0.466, 0.674, 0.188], | 
					
						
						|  | [0.301, 0.745, 0.933] | 
					
						
						|  | ] | 
					
						
						|  |  | 
					
						
						|  | def make_prediction(img, feature_extractor, model): | 
					
						
						|  | inputs = feature_extractor(img, return_tensors="pt") | 
					
						
						|  | outputs = model(**inputs) | 
					
						
						|  | img_size = torch.tensor([tuple(reversed(img.size))]) | 
					
						
						|  | processed_outputs = feature_extractor.post_process(outputs, img_size) | 
					
						
						|  | return processed_outputs[0] | 
					
						
						|  |  | 
					
						
						|  | def fig2img(fig): | 
					
						
						|  | buf = io.BytesIO() | 
					
						
						|  | fig.savefig(buf) | 
					
						
						|  | buf.seek(0) | 
					
						
						|  | pil_img = Image.open(buf) | 
					
						
						|  | basewidth = 750 | 
					
						
						|  | wpercent = (basewidth/float(pil_img.size[0])) | 
					
						
						|  | hsize = int((float(pil_img.size[1])*float(wpercent))) | 
					
						
						|  | img = pil_img.resize((basewidth,hsize), Image.Resampling.LANCZOS) | 
					
						
						|  | return img | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def visualize_prediction(img, output_dict, threshold=0.5, id2label=None): | 
					
						
						|  | keep = output_dict["scores"] > threshold | 
					
						
						|  | boxes = output_dict["boxes"][keep].tolist() | 
					
						
						|  | scores = output_dict["scores"][keep].tolist() | 
					
						
						|  | labels = output_dict["labels"][keep].tolist() | 
					
						
						|  | if id2label is not None: | 
					
						
						|  | labels = [id2label[x] for x in labels] | 
					
						
						|  |  | 
					
						
						|  | plt.figure(figsize=(50, 50)) | 
					
						
						|  | plt.imshow(img) | 
					
						
						|  | ax = plt.gca() | 
					
						
						|  | colors = COLORS * 100 | 
					
						
						|  | for score, (xmin, ymin, xmax, ymax), label, color in zip(scores, boxes, labels, colors): | 
					
						
						|  | ax.add_patch(plt.Rectangle((xmin, ymin), xmax - xmin, ymax - ymin, fill=False, color=color, linewidth=5)) | 
					
						
						|  | ax.text(xmin, ymin, f"{label}: {score:0.2f}", fontsize=30, bbox=dict(facecolor="yellow", alpha=0.5)) | 
					
						
						|  | plt.axis("off") | 
					
						
						|  | return fig2img(plt.gcf()) | 
					
						
						|  |  | 
					
						
						|  | def get_original_image(url_input): | 
					
						
						|  | if validators.url(url_input): | 
					
						
						|  | image = Image.open(requests.get(url_input, stream=True).raw) | 
					
						
						|  |  | 
					
						
						|  | return image | 
					
						
						|  |  | 
					
						
						|  | def detect_objects(model_name,url_input,image_input,webcam_input,threshold): | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | feature_extractor = AutoFeatureExtractor.from_pretrained(model_name) | 
					
						
						|  |  | 
					
						
						|  | model = YolosForObjectDetection.from_pretrained(model_name) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if validators.url(url_input): | 
					
						
						|  | image = get_original_image(url_input) | 
					
						
						|  |  | 
					
						
						|  | elif image_input: | 
					
						
						|  | image = image_input | 
					
						
						|  |  | 
					
						
						|  | elif webcam_input: | 
					
						
						|  | image = webcam_input | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | processed_outputs = make_prediction(image, feature_extractor, model) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | viz_img = visualize_prediction(image, processed_outputs, threshold, model.config.id2label) | 
					
						
						|  |  | 
					
						
						|  | return viz_img | 
					
						
						|  |  | 
					
						
						|  | def set_example_image(example: list) -> dict: | 
					
						
						|  | return gr.Image.update(value=example[0]) | 
					
						
						|  |  | 
					
						
						|  | def set_example_url(example: list) -> dict: | 
					
						
						|  | return gr.Textbox.update(value=example[0]), gr.Image.update(value=get_original_image(example[0])) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | title = """<h1 id="title">Face Mask Detection with YOLOS</h1>""" | 
					
						
						|  |  | 
					
						
						|  | description = """ | 
					
						
						|  |  | 
					
						
						|  | YOLOS is a Vision Transformer (ViT) trained using the DETR loss. Despite its simplicity, a base-sized YOLOS model is able to achieve 42 AP on COCO validation 2017 (similar to DETR and more complex frameworks such as Faster R-CNN). | 
					
						
						|  |  | 
					
						
						|  | The YOLOS model was fine-tuned on COCO 2017 object detection (118k annotated images). It was introduced in the paper [You Only Look at One Sequence: Rethinking Transformer in Vision through Object Detection](https://arxiv.org/abs/2106.00666) by Fang et al. and first released in [this repository](https://github.com/hustvl/YOLOS). | 
					
						
						|  |  | 
					
						
						|  | This model was further fine-tuned on the [face mask dataset]("https://www.kaggle.com/datasets/andrewmvd/face-mask-detection") from Kaggle. The dataset consists of 853 images of people with annotations categorised as "with mask","without mask" and "mask not worn correctly". The model was trained for 200 epochs on a single GPU. | 
					
						
						|  |  | 
					
						
						|  | Links to HuggingFace Models: | 
					
						
						|  | - [nickmuchi/yolos-small-finetuned-masks](https://huggingface.co/nickmuchi/yolos-small-finetuned-masks) | 
					
						
						|  | - [hustlv/yolos-small](https://huggingface.co/hustlv/yolos-small) | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | models = ["nickmuchi/yolos-small-finetuned-masks","nickmuchi/yolos-base-finetuned-masks"] | 
					
						
						|  | urls = ["https://api.time.com/wp-content/uploads/2020/03/hong-kong-mask-admiralty.jpg","https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcQ7wiGZhgAFuIpwFJzbpv8kUMM_Q3WaAWYf5NpSJduxvHQ7V2WnqZ0wMWS6cK5gvlfPGxc&usqp=CAU"] | 
					
						
						|  |  | 
					
						
						|  | twitter_link = """ | 
					
						
						|  | [](https://twitter.com/nickmuchi) | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | css = ''' | 
					
						
						|  | h1#title { | 
					
						
						|  | text-align: center; | 
					
						
						|  | } | 
					
						
						|  | ''' | 
					
						
						|  | demo = gr.Blocks(css=css) | 
					
						
						|  |  | 
					
						
						|  | with demo: | 
					
						
						|  | with gr.Box(): | 
					
						
						|  |  | 
					
						
						|  | gr.Markdown(title) | 
					
						
						|  | gr.Markdown(description) | 
					
						
						|  | gr.Markdown(twitter_link) | 
					
						
						|  | options = gr.Dropdown(choices=models,label='Object Detection Model',show_label=True) | 
					
						
						|  | slider_input = gr.Slider(minimum=0.2,maximum=1,value=0.5,step=0.1,label='Prediction Threshold') | 
					
						
						|  |  | 
					
						
						|  | with gr.Tabs(): | 
					
						
						|  | with gr.TabItem('Image URL'): | 
					
						
						|  | with gr.Row(): | 
					
						
						|  | with gr.Column(): | 
					
						
						|  | url_input = gr.Textbox(lines=2,label='Enter valid image URL here..') | 
					
						
						|  | original_image = gr.Image(shape=(750,750)) | 
					
						
						|  | with gr.Column(): | 
					
						
						|  | img_output_from_url = gr.Image(shape=(750,750)) | 
					
						
						|  |  | 
					
						
						|  | with gr.Row(): | 
					
						
						|  | example_url = gr.Dataset(components=[url_input],samples=[[str(url)] for url in urls]) | 
					
						
						|  |  | 
					
						
						|  | url_but = gr.Button('Detect') | 
					
						
						|  |  | 
					
						
						|  | with gr.TabItem('Image Upload'): | 
					
						
						|  | with gr.Row(): | 
					
						
						|  | img_input = gr.Image(type='pil',shape=(750,750)) | 
					
						
						|  | img_output_from_upload= gr.Image(shape=(750,750)) | 
					
						
						|  |  | 
					
						
						|  | with gr.Row(): | 
					
						
						|  | example_images = gr.Dataset(components=[img_input], | 
					
						
						|  | samples=[[path.as_posix()] for path in sorted(pathlib.Path('images').rglob('*.j*g'))]) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | img_but = gr.Button('Detect') | 
					
						
						|  |  | 
					
						
						|  | with gr.TabItem('WebCam'): | 
					
						
						|  | with gr.Row(): | 
					
						
						|  | web_input = gr.Image(source='webcam',type='pil',shape=(750,750),streaming=True) | 
					
						
						|  | img_output_from_webcam= gr.Image(shape=(750,750)) | 
					
						
						|  |  | 
					
						
						|  | cam_but = gr.Button('Detect') | 
					
						
						|  |  | 
					
						
						|  | url_but.click(detect_objects,inputs=[options,url_input,img_input,web_input,slider_input],outputs=[img_output_from_url],queue=True) | 
					
						
						|  | img_but.click(detect_objects,inputs=[options,url_input,img_input,web_input,slider_input],outputs=[img_output_from_upload],queue=True) | 
					
						
						|  | cam_but.click(detect_objects,inputs=[options,url_input,img_input,web_input,slider_input],outputs=[img_output_from_webcam],queue=True) | 
					
						
						|  | example_images.click(fn=set_example_image,inputs=[example_images],outputs=[img_input]) | 
					
						
						|  | example_url.click(fn=set_example_url,inputs=[example_url],outputs=[url_input,original_image]) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | gr.Markdown("") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | demo.launch(debug=True,enable_queue=True) |