Update pages/3_Earnings_Semantic_Search_π_.py
Browse files
pages/3_Earnings_Semantic_Search_π_.py
CHANGED
@@ -109,11 +109,17 @@ try:
|
|
109 |
|
110 |
docsearch = create_vectorstore(earnings_text,title, embedding_model)
|
111 |
|
|
|
112 |
|
113 |
if "messages" not in st.session_state or st.sidebar.button("Clear message history"):
|
114 |
st.session_state["messages"] = [AIMessage(content=starter_message)]
|
115 |
|
116 |
-
|
|
|
|
|
|
|
|
|
|
|
117 |
|
118 |
if user_question := st.chat_input(placeholder=starter_message):
|
119 |
st.chat_message("user").write(user_question)
|
@@ -121,15 +127,6 @@ try:
|
|
121 |
with st.chat_message("assistant"):
|
122 |
|
123 |
st_callback = StreamlitCallbackHandler(st.container())
|
124 |
-
|
125 |
-
memory, agent_executor = create_memory_and_agent(user_question,docsearch)
|
126 |
-
|
127 |
-
for msg in st.session_state.messages:
|
128 |
-
if isinstance(msg, AIMessage):
|
129 |
-
st.chat_message("assistant").write(msg.content)
|
130 |
-
elif isinstance(msg, HumanMessage):
|
131 |
-
st.chat_message("user").write(msg.content)
|
132 |
-
memory.chat_memory.add_message(msg)
|
133 |
|
134 |
response = agent_executor(
|
135 |
{"input": user_question, "history": st.session_state.messages},
|
|
|
109 |
|
110 |
docsearch = create_vectorstore(earnings_text,title, embedding_model)
|
111 |
|
112 |
+
memory, agent_executor = create_memory_and_agent(earnings_text,docsearch)
|
113 |
|
114 |
if "messages" not in st.session_state or st.sidebar.button("Clear message history"):
|
115 |
st.session_state["messages"] = [AIMessage(content=starter_message)]
|
116 |
|
117 |
+
for msg in st.session_state.messages:
|
118 |
+
if isinstance(msg, AIMessage):
|
119 |
+
st.chat_message("assistant").write(msg.content)
|
120 |
+
elif isinstance(msg, HumanMessage):
|
121 |
+
st.chat_message("user").write(msg.content)
|
122 |
+
memory.chat_memory.add_message(msg)
|
123 |
|
124 |
if user_question := st.chat_input(placeholder=starter_message):
|
125 |
st.chat_message("user").write(user_question)
|
|
|
127 |
with st.chat_message("assistant"):
|
128 |
|
129 |
st_callback = StreamlitCallbackHandler(st.container())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
|
131 |
response = agent_executor(
|
132 |
{"input": user_question, "history": st.session_state.messages},
|