Delete Home.py
Browse files
Home.py
DELETED
@@ -1,126 +0,0 @@
|
|
1 |
-
import whisper
|
2 |
-
import os
|
3 |
-
from pytube import YouTube
|
4 |
-
import pandas as pd
|
5 |
-
import plotly_express as px
|
6 |
-
import nltk
|
7 |
-
import plotly.graph_objects as go
|
8 |
-
from optimum.onnxruntime import ORTModelForSequenceClassification
|
9 |
-
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification
|
10 |
-
from sentence_transformers import SentenceTransformer, CrossEncoder, util
|
11 |
-
import streamlit as st
|
12 |
-
|
13 |
-
nltk.download('punkt')
|
14 |
-
|
15 |
-
from nltk import sent_tokenize
|
16 |
-
|
17 |
-
|
18 |
-
st.set_page_config(
|
19 |
-
page_title="Home",
|
20 |
-
page_icon="π",
|
21 |
-
)
|
22 |
-
|
23 |
-
auth_token = os.environ.get("auth_token")
|
24 |
-
|
25 |
-
@st.experimental_singleton()
|
26 |
-
def load_models():
|
27 |
-
asr_model = whisper.load_model("small")
|
28 |
-
q_model = ORTModelForSequenceClassification.from_pretrained("nickmuchi/quantized-optimum-finbert-tone")
|
29 |
-
q_tokenizer = AutoTokenizer.from_pretrained("nickmuchi/quantized-optimum-finbert-tone")
|
30 |
-
cross_encoder = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-12-v2')
|
31 |
-
|
32 |
-
return asr_model, q_model, q_tokenizer, cross_encoder
|
33 |
-
|
34 |
-
asr_model, q_model, q_tokenizer, cross_encoder = load_models()
|
35 |
-
|
36 |
-
@st.experimental_memo(suppress_st_warning=True)
|
37 |
-
def inference(link, upload):
|
38 |
-
'''Convert Youtube video or Audio upload to text'''
|
39 |
-
|
40 |
-
if validators.url(link):
|
41 |
-
|
42 |
-
yt = YouTube(link)
|
43 |
-
title = yt.title
|
44 |
-
path = yt.streams.filter(only_audio=True)[0].download(filename="audio.mp4")
|
45 |
-
options = whisper.DecodingOptions(without_timestamps=True)
|
46 |
-
results = asr_model.transcribe(path)
|
47 |
-
|
48 |
-
return results, yt.title
|
49 |
-
|
50 |
-
elif upload:
|
51 |
-
results = asr_model.transcribe(upload)
|
52 |
-
|
53 |
-
return results, "Transcribed Earnings Audio"
|
54 |
-
|
55 |
-
@st.experimental_memo(suppress_st_warning=True)
|
56 |
-
def sentiment_pipe(earnings_text):
|
57 |
-
'''Determine the sentiment of the text'''
|
58 |
-
|
59 |
-
remote_clx = pipeline("text-classification",model=q_model, tokenizer=q_tokenizer)
|
60 |
-
|
61 |
-
earnings_sentiment = remote_clx(sent_tokenize(earnings_text))
|
62 |
-
|
63 |
-
return earnings_sentiment
|
64 |
-
|
65 |
-
|
66 |
-
def preprocess_plain_text(text,window_size=3):
|
67 |
-
'''Preprocess text for semantic search'''
|
68 |
-
|
69 |
-
text = text.encode("ascii", "ignore").decode() # unicode
|
70 |
-
text = re.sub(r"https*\S+", " ", text) # url
|
71 |
-
text = re.sub(r"@\S+", " ", text) # mentions
|
72 |
-
text = re.sub(r"#\S+", " ", text) # hastags
|
73 |
-
text = re.sub(r"\s{2,}", " ", text) # over spaces
|
74 |
-
#text = re.sub("[^.,!?%$A-Za-z0-9]+", " ", text) # special characters except .,!?
|
75 |
-
|
76 |
-
#break into lines and remove leading and trailing space on each
|
77 |
-
lines = [line.strip() for line in text.splitlines()]
|
78 |
-
|
79 |
-
# #break multi-headlines into a line each
|
80 |
-
chunks = [phrase.strip() for line in lines for phrase in line.split(" ")]
|
81 |
-
|
82 |
-
# # drop blank lines
|
83 |
-
text = '\n'.join(chunk for chunk in chunks if chunk)
|
84 |
-
|
85 |
-
## We split this article into paragraphs and then every paragraph into sentences
|
86 |
-
paragraphs = []
|
87 |
-
for paragraph in text.replace('\n',' ').split("\n\n"):
|
88 |
-
if len(paragraph.strip()) > 0:
|
89 |
-
paragraphs.append(sent_tokenize(paragraph.strip()))
|
90 |
-
|
91 |
-
#We combine up to 3 sentences into a passage. You can choose smaller or larger values for window_size
|
92 |
-
#Smaller value: Context from other sentences might get lost
|
93 |
-
#Lager values: More context from the paragraph remains, but results are longer
|
94 |
-
window_size = window_size
|
95 |
-
passages = []
|
96 |
-
for paragraph in paragraphs:
|
97 |
-
for start_idx in range(0, len(paragraph), window_size):
|
98 |
-
end_idx = min(start_idx+window_size, len(paragraph))
|
99 |
-
passages.append(" ".join(paragraph[start_idx:end_idx]))
|
100 |
-
|
101 |
-
print(f"Sentences: {sum([len(p) for p in paragraphs])}")
|
102 |
-
print(f"Passages: {len(passages)}")
|
103 |
-
|
104 |
-
return passages
|
105 |
-
|
106 |
-
def display_df_as_table(model,top_k,score='score'):
|
107 |
-
'''Display the df with text and scores as a table'''
|
108 |
-
|
109 |
-
df = pd.DataFrame([(hit[score],passages[hit['corpus_id']]) for hit in model[0:top_k]],columns=['Score','Text'])
|
110 |
-
df['Score'] = round(df['Score'],2)
|
111 |
-
|
112 |
-
return df
|
113 |
-
|
114 |
-
def make_spans(text,results):
|
115 |
-
results_list = []
|
116 |
-
for i in range(len(results)):
|
117 |
-
results_list.append(results[i]['label'])
|
118 |
-
facts_spans = []
|
119 |
-
facts_spans = list(zip(sent_tokenizer(text),results_list))
|
120 |
-
return facts_spans
|
121 |
-
|
122 |
-
##Fiscal Sentiment by Sentence
|
123 |
-
def fin_ext(text):
|
124 |
-
results = remote_clx(sent_tokenizer(text))
|
125 |
-
return make_spans(text,results)
|
126 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|