|
import whisper |
|
import os |
|
from pytube import YouTube |
|
import pandas as pd |
|
import plotly_express as px |
|
import nltk |
|
import plotly.graph_objects as go |
|
from optimum.onnxruntime import ORTModelForSequenceClassification |
|
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelForSeq2SeqLM |
|
from sentence_transformers import SentenceTransformer, CrossEncoder, util |
|
import streamlit as st |
|
import en_core_web_lg |
|
import validators |
|
import re |
|
import itertools |
|
import numpy as np |
|
from bs4 import BeautifulSoup |
|
import base64, time |
|
from annotated_text import annotated_text |
|
import pickle, math |
|
import wikipedia |
|
from pyvis.network import Network |
|
import torch |
|
from langchain.docstore.document import Document |
|
from langchain.embeddings import HuggingFaceEmbeddings,HuggingFaceInstructEmbeddings |
|
from langchain.vectorstores import FAISS |
|
from langchain.chains.qa_with_sources import load_qa_with_sources_chain |
|
from langchain.text_splitter import CharacterTextSplitter |
|
from langchain.llms import OpenAI |
|
from langchain import VectorDBQA |
|
from langchain.chains.question_answering import load_qa_chain |
|
from langchain.prompts import PromptTemplate |
|
from langchain.prompts.base import RegexParser |
|
|
|
nltk.download('punkt') |
|
|
|
|
|
from nltk import sent_tokenize |
|
|
|
OPEN_AI_KEY = os.environ.get('OPEN_AI_KEY') |
|
time_str = time.strftime("%d%m%Y-%H%M%S") |
|
HTML_WRAPPER = """<div style="overflow-x: auto; border: 1px solid #e6e9ef; border-radius: 0.25rem; padding: 1rem; |
|
margin-bottom: 2.5rem">{}</div> """ |
|
|
|
|
|
output_parser = RegexParser( |
|
regex=r"(.*?)\nScore: (.*)", |
|
output_keys=["answer", "score"], |
|
) |
|
|
|
template = """Given the following extracted parts of a long document and a question, create a final answer with references ("SOURCES"). |
|
If you don't know the answer, just say that you don't know. Don't try to make up an answer. |
|
ALWAYS return a "SOURCES" part in your answer. |
|
|
|
In addition to giving an answer, also return a score of how fully it answered the user's question. This should be in the following format: |
|
|
|
Question: [question here] |
|
Helpful Answer: [answer here] |
|
Score: [score between 0 and 100] |
|
|
|
Begin! |
|
|
|
Context: |
|
--------- |
|
{summaries} |
|
--------- |
|
Question: {question} |
|
Helpful Answer:""" |
|
|
|
|
|
refine_prompt_template = ( |
|
"The original question is as follows: {question}\n" |
|
"We have provided an existing answer: {existing_answer}\n" |
|
"We have the opportunity to refine the existing answer" |
|
"(only if needed) with some more context below.\n" |
|
"------------\n" |
|
"{context_str}\n" |
|
"------------\n" |
|
"Given the new context, refine the original answer to better " |
|
"answer the question. " |
|
"If the context isn't useful, return the original answer." |
|
) |
|
refine_prompt = PromptTemplate( |
|
input_variables=["question", "existing_answer", "context_str"], |
|
template=refine_prompt_template, |
|
) |
|
|
|
|
|
initial_qa_template = ( |
|
"Context information is below. \n" |
|
"---------------------\n" |
|
"{context_str}" |
|
"\n---------------------\n" |
|
"Given the context information and not prior knowledge, " |
|
"answer the question: {question}\n.\n" |
|
) |
|
|
|
|
|
|
|
@st.experimental_singleton(suppress_st_warning=True) |
|
def load_models(): |
|
|
|
'''Load and cache all the models to be used''' |
|
q_model = ORTModelForSequenceClassification.from_pretrained("nickmuchi/quantized-optimum-finbert-tone") |
|
ner_model = AutoModelForTokenClassification.from_pretrained("xlm-roberta-large-finetuned-conll03-english") |
|
kg_model = AutoModelForSeq2SeqLM.from_pretrained("Babelscape/rebel-large") |
|
kg_tokenizer = AutoTokenizer.from_pretrained("Babelscape/rebel-large") |
|
q_tokenizer = AutoTokenizer.from_pretrained("nickmuchi/quantized-optimum-finbert-tone") |
|
ner_tokenizer = AutoTokenizer.from_pretrained("xlm-roberta-large-finetuned-conll03-english") |
|
emb_tokenizer = AutoTokenizer.from_pretrained('google/flan-t5-xl') |
|
sent_pipe = pipeline("text-classification",model=q_model, tokenizer=q_tokenizer) |
|
sum_pipe = pipeline("summarization",model="facebook/bart-large-cnn", tokenizer="facebook/bart-large-cnn",clean_up_tokenization_spaces=True) |
|
ner_pipe = pipeline("ner", model=ner_model, tokenizer=ner_tokenizer, grouped_entities=True) |
|
cross_encoder = CrossEncoder('cross-encoder/mmarco-mMiniLMv2-L12-H384-v1') |
|
sbert = SentenceTransformer('all-MiniLM-L6-v2') |
|
|
|
return sent_pipe, sum_pipe, ner_pipe, cross_encoder, kg_model, kg_tokenizer, emb_tokenizer, sbert |
|
|
|
@st.experimental_singleton(suppress_st_warning=True) |
|
def load_asr_model(asr_model_name): |
|
asr_model = whisper.load_model(asr_model_name) |
|
|
|
return asr_model |
|
|
|
@st.experimental_singleton(suppress_st_warning=True) |
|
def process_corpus(corpus, _tokenizer, title, embedding_model, chunk_size=200, overlap=50): |
|
|
|
'''Process text for Semantic Search''' |
|
|
|
text_splitter = CharacterTextSplitter.from_huggingface_tokenizer(_tokenizer,chunk_size=chunk_size,chunk_overlap=overlap,separator='.') |
|
|
|
texts = text_splitter.split_text(corpus) |
|
|
|
embeddings = gen_embeddings(embedding_model) |
|
|
|
docsearch = FAISS.from_texts(texts, embeddings, metadatas=[{"source": i} for i in range(len(texts))]) |
|
|
|
return docsearch |
|
|
|
@st.experimental_singleton(suppress_st_warning=True) |
|
def chunk_and_preprocess_text(text,thresh=500): |
|
|
|
"""Chunk text longer than n tokens for summarization""" |
|
|
|
sentences = sent_tokenize(clean_text(text)) |
|
|
|
|
|
current_chunk = 0 |
|
chunks = [] |
|
|
|
for sentence in sentences: |
|
if len(chunks) == current_chunk + 1: |
|
if len(chunks[current_chunk]) + len(sentence.split(" ")) <= thresh: |
|
chunks[current_chunk].extend(sentence.split(" ")) |
|
else: |
|
current_chunk += 1 |
|
chunks.append(sentence.split(" ")) |
|
else: |
|
chunks.append(sentence.split(" ")) |
|
|
|
for chunk_id in range(len(chunks)): |
|
chunks[chunk_id] = " ".join(chunks[chunk_id]) |
|
|
|
return chunks |
|
|
|
@st.experimental_singleton(suppress_st_warning=True) |
|
def gen_embeddings(embedding_model): |
|
|
|
'''Generate embeddings for given model''' |
|
|
|
if 'hkunlp' in embedding_model: |
|
|
|
embeddings = HuggingFaceInstructEmbeddings(model_name=embedding_model, |
|
query_instruction='Represent the Financial question for retrieving supporting paragraphs: ', |
|
embed_instruction='Represent the Financial paragraph for retrieval: ') |
|
|
|
else: |
|
|
|
embeddings = HuggingFaceEmbeddings(model_name=embedding_model) |
|
|
|
return embeddings |
|
|
|
@st.experimental_memo(suppress_st_warning=True) |
|
def embed_text(query,title,embedding_model,_emb_tok,_docsearch,chain_type): |
|
|
|
'''Embed text and generate semantic search scores''' |
|
|
|
title = title.split()[0].lower() |
|
|
|
docs = _docsearch.similarity_search_with_score(query, k=3) |
|
|
|
if chain_type == 'Normal': |
|
|
|
docs = [d[0] for d in docs] |
|
|
|
PROMPT = PromptTemplate(template=template, |
|
input_variables=["summaries", "question"], |
|
output_parser=output_parser) |
|
|
|
chain = load_qa_with_sources_chain(OpenAI(temperature=0), |
|
chain_type="stuff", |
|
prompt=PROMPT, |
|
) |
|
|
|
answer = chain({"input_documents": docs, "question": query}, return_only_outputs=False) |
|
|
|
|
|
elif chain_type == 'Refined': |
|
|
|
docs = [d[0] for d in docs] |
|
|
|
initial_qa_prompt = PromptTemplate( |
|
input_variables=["context_str", "question"], template=initial_qa_template |
|
) |
|
chain = load_qa_chain(OpenAI(temperature=0), chain_type="refine", return_refine_steps=False, |
|
question_prompt=initial_qa_prompt, refine_prompt=refine_prompt) |
|
answer = chain({"input_documents": docs, "question": query}, return_only_outputs=False) |
|
|
|
return answer |
|
|
|
@st.experimental_singleton(suppress_st_warning=True) |
|
def get_spacy(): |
|
nlp = en_core_web_lg.load() |
|
return nlp |
|
|
|
@st.experimental_memo(suppress_st_warning=True) |
|
def inference(link, upload, _asr_model): |
|
'''Convert Youtube video or Audio upload to text''' |
|
|
|
if validators.url(link): |
|
|
|
yt = YouTube(link) |
|
title = yt.title |
|
path = yt.streams.filter(only_audio=True)[0].download(filename="audio.mp4") |
|
results = _asr_model.transcribe(path, task='transcribe', language='en') |
|
|
|
return results['text'], yt.title |
|
|
|
elif upload: |
|
results = _asr_model.trasncribe(upload, task='transcribe', language='en') |
|
|
|
return results['text'], "Transcribed Earnings Audio" |
|
|
|
@st.experimental_memo(suppress_st_warning=True) |
|
def sentiment_pipe(earnings_text): |
|
'''Determine the sentiment of the text''' |
|
|
|
earnings_sentences = chunk_long_text(earnings_text,150,1,1) |
|
earnings_sentiment = sent_pipe(earnings_sentences) |
|
|
|
return earnings_sentiment, earnings_sentences |
|
|
|
@st.experimental_memo(suppress_st_warning=True) |
|
def summarize_text(text_to_summarize,max_len,min_len): |
|
'''Summarize text with HF model''' |
|
|
|
summarized_text = sum_pipe(text_to_summarize,max_length=max_len,min_length=min_len,clean_up_tokenization_spaces=True,no_repeat_ngram_size=4, |
|
encoder_no_repeat_ngram_size=3, |
|
repetition_penalty=3.5, |
|
num_beams=4, |
|
early_stopping=True) |
|
summarized_text = ' '.join([summ['summary_text'] for summ in summarized_text]) |
|
|
|
return summarized_text |
|
|
|
@st.experimental_memo(suppress_st_warning=True) |
|
def clean_text(text): |
|
'''Clean all text''' |
|
|
|
text = text.encode("ascii", "ignore").decode() |
|
text = re.sub(r"https*\S+", " ", text) |
|
text = re.sub(r"@\S+", " ", text) |
|
text = re.sub(r"#\S+", " ", text) |
|
text = re.sub(r"\s{2,}", " ", text) |
|
|
|
return text |
|
|
|
@st.experimental_memo(suppress_st_warning=True) |
|
def chunk_long_text(text,threshold,window_size=3,stride=2): |
|
'''Preprocess text and chunk for sentiment analysis''' |
|
|
|
|
|
sentences = sent_tokenize(text) |
|
out = [] |
|
|
|
|
|
for chunk in sentences: |
|
if len(chunk.split()) < threshold: |
|
out.append(chunk) |
|
else: |
|
words = chunk.split() |
|
num = int(len(words)/threshold) |
|
for i in range(0,num*threshold+1,threshold): |
|
out.append(' '.join(words[i:threshold+i])) |
|
|
|
passages = [] |
|
|
|
|
|
for paragraph in [out]: |
|
for start_idx in range(0, len(paragraph), stride): |
|
end_idx = min(start_idx+window_size, len(paragraph)) |
|
passages.append(" ".join(paragraph[start_idx:end_idx])) |
|
|
|
return passages |
|
|
|
|
|
def summary_downloader(raw_text): |
|
|
|
b64 = base64.b64encode(raw_text.encode()).decode() |
|
new_filename = "new_text_file_{}_.txt".format(time_str) |
|
st.markdown("#### Download Summary as a File ###") |
|
href = f'<a href="data:file/txt;base64,{b64}" download="{new_filename}">Click to Download!!</a>' |
|
st.markdown(href,unsafe_allow_html=True) |
|
|
|
@st.experimental_memo(suppress_st_warning=True) |
|
def get_all_entities_per_sentence(text): |
|
doc = nlp(''.join(text)) |
|
|
|
sentences = list(doc.sents) |
|
|
|
entities_all_sentences = [] |
|
for sentence in sentences: |
|
entities_this_sentence = [] |
|
|
|
|
|
for entity in sentence.ents: |
|
entities_this_sentence.append(str(entity)) |
|
|
|
|
|
entities_xlm = [entity["word"] for entity in ner_pipe(str(sentence))] |
|
for entity in entities_xlm: |
|
entities_this_sentence.append(str(entity)) |
|
|
|
entities_all_sentences.append(entities_this_sentence) |
|
|
|
return entities_all_sentences |
|
|
|
@st.experimental_memo(suppress_st_warning=True) |
|
def get_all_entities(text): |
|
all_entities_per_sentence = get_all_entities_per_sentence(text) |
|
return list(itertools.chain.from_iterable(all_entities_per_sentence)) |
|
|
|
@st.experimental_memo(suppress_st_warning=True) |
|
def get_and_compare_entities(article_content,summary_output): |
|
|
|
all_entities_per_sentence = get_all_entities_per_sentence(article_content) |
|
entities_article = list(itertools.chain.from_iterable(all_entities_per_sentence)) |
|
|
|
all_entities_per_sentence = get_all_entities_per_sentence(summary_output) |
|
entities_summary = list(itertools.chain.from_iterable(all_entities_per_sentence)) |
|
|
|
matched_entities = [] |
|
unmatched_entities = [] |
|
for entity in entities_summary: |
|
if any(entity.lower() in substring_entity.lower() for substring_entity in entities_article): |
|
matched_entities.append(entity) |
|
elif any( |
|
np.inner(sbert.encode(entity, show_progress_bar=False), |
|
sbert.encode(art_entity, show_progress_bar=False)) > 0.9 for |
|
art_entity in entities_article): |
|
matched_entities.append(entity) |
|
else: |
|
unmatched_entities.append(entity) |
|
|
|
matched_entities = list(dict.fromkeys(matched_entities)) |
|
unmatched_entities = list(dict.fromkeys(unmatched_entities)) |
|
|
|
matched_entities_to_remove = [] |
|
unmatched_entities_to_remove = [] |
|
|
|
for entity in matched_entities: |
|
for substring_entity in matched_entities: |
|
if entity != substring_entity and entity.lower() in substring_entity.lower(): |
|
matched_entities_to_remove.append(entity) |
|
|
|
for entity in unmatched_entities: |
|
for substring_entity in unmatched_entities: |
|
if entity != substring_entity and entity.lower() in substring_entity.lower(): |
|
unmatched_entities_to_remove.append(entity) |
|
|
|
matched_entities_to_remove = list(dict.fromkeys(matched_entities_to_remove)) |
|
unmatched_entities_to_remove = list(dict.fromkeys(unmatched_entities_to_remove)) |
|
|
|
for entity in matched_entities_to_remove: |
|
matched_entities.remove(entity) |
|
for entity in unmatched_entities_to_remove: |
|
unmatched_entities.remove(entity) |
|
|
|
return matched_entities, unmatched_entities |
|
|
|
@st.experimental_memo(suppress_st_warning=True) |
|
def highlight_entities(article_content,summary_output): |
|
|
|
markdown_start_red = "<mark class=\"entity\" style=\"background: rgb(238, 135, 135);\">" |
|
markdown_start_green = "<mark class=\"entity\" style=\"background: rgb(121, 236, 121);\">" |
|
markdown_end = "</mark>" |
|
|
|
matched_entities, unmatched_entities = get_and_compare_entities(article_content,summary_output) |
|
|
|
print(summary_output) |
|
|
|
for entity in matched_entities: |
|
summary_output = re.sub(f'({entity})(?![^rgb\(]*\))',markdown_start_green + entity + markdown_end,summary_output) |
|
|
|
for entity in unmatched_entities: |
|
summary_output = re.sub(f'({entity})(?![^rgb\(]*\))',markdown_start_red + entity + markdown_end,summary_output) |
|
|
|
print("") |
|
print(summary_output) |
|
|
|
print("") |
|
print(summary_output) |
|
|
|
soup = BeautifulSoup(summary_output, features="html.parser") |
|
|
|
return HTML_WRAPPER.format(soup) |
|
|
|
|
|
def display_df_as_table(model,top_k,score='score'): |
|
'''Display the df with text and scores as a table''' |
|
|
|
df = pd.DataFrame([(hit[score],passages[hit['corpus_id']]) for hit in model[0:top_k]],columns=['Score','Text']) |
|
df['Score'] = round(df['Score'],2) |
|
|
|
return df |
|
|
|
|
|
def make_spans(text,results): |
|
results_list = [] |
|
for i in range(len(results)): |
|
results_list.append(results[i]['label']) |
|
facts_spans = [] |
|
facts_spans = list(zip(sent_tokenizer(text),results_list)) |
|
return facts_spans |
|
|
|
|
|
def fin_ext(text): |
|
results = remote_clx(sent_tokenizer(text)) |
|
return make_spans(text,results) |
|
|
|
|
|
|
|
def extract_relations_from_model_output(text): |
|
relations = [] |
|
relation, subject, relation, object_ = '', '', '', '' |
|
text = text.strip() |
|
current = 'x' |
|
text_replaced = text.replace("<s>", "").replace("<pad>", "").replace("</s>", "") |
|
for token in text_replaced.split(): |
|
if token == "<triplet>": |
|
current = 't' |
|
if relation != '': |
|
relations.append({ |
|
'head': subject.strip(), |
|
'type': relation.strip(), |
|
'tail': object_.strip() |
|
}) |
|
relation = '' |
|
subject = '' |
|
elif token == "<subj>": |
|
current = 's' |
|
if relation != '': |
|
relations.append({ |
|
'head': subject.strip(), |
|
'type': relation.strip(), |
|
'tail': object_.strip() |
|
}) |
|
object_ = '' |
|
elif token == "<obj>": |
|
current = 'o' |
|
relation = '' |
|
else: |
|
if current == 't': |
|
subject += ' ' + token |
|
elif current == 's': |
|
object_ += ' ' + token |
|
elif current == 'o': |
|
relation += ' ' + token |
|
if subject != '' and relation != '' and object_ != '': |
|
relations.append({ |
|
'head': subject.strip(), |
|
'type': relation.strip(), |
|
'tail': object_.strip() |
|
}) |
|
return relations |
|
|
|
def from_text_to_kb(text, model, tokenizer, article_url, span_length=128, article_title=None, |
|
article_publish_date=None, verbose=False): |
|
|
|
inputs = tokenizer([text], return_tensors="pt") |
|
|
|
|
|
num_tokens = len(inputs["input_ids"][0]) |
|
if verbose: |
|
print(f"Input has {num_tokens} tokens") |
|
num_spans = math.ceil(num_tokens / span_length) |
|
if verbose: |
|
print(f"Input has {num_spans} spans") |
|
overlap = math.ceil((num_spans * span_length - num_tokens) / |
|
max(num_spans - 1, 1)) |
|
spans_boundaries = [] |
|
start = 0 |
|
for i in range(num_spans): |
|
spans_boundaries.append([start + span_length * i, |
|
start + span_length * (i + 1)]) |
|
start -= overlap |
|
if verbose: |
|
print(f"Span boundaries are {spans_boundaries}") |
|
|
|
|
|
tensor_ids = [inputs["input_ids"][0][boundary[0]:boundary[1]] |
|
for boundary in spans_boundaries] |
|
tensor_masks = [inputs["attention_mask"][0][boundary[0]:boundary[1]] |
|
for boundary in spans_boundaries] |
|
inputs = { |
|
"input_ids": torch.stack(tensor_ids), |
|
"attention_mask": torch.stack(tensor_masks) |
|
} |
|
|
|
|
|
num_return_sequences = 3 |
|
gen_kwargs = { |
|
"max_length": 256, |
|
"length_penalty": 0, |
|
"num_beams": 3, |
|
"num_return_sequences": num_return_sequences |
|
} |
|
generated_tokens = model.generate( |
|
**inputs, |
|
**gen_kwargs, |
|
) |
|
|
|
|
|
decoded_preds = tokenizer.batch_decode(generated_tokens, |
|
skip_special_tokens=False) |
|
|
|
|
|
kb = KB() |
|
i = 0 |
|
for sentence_pred in decoded_preds: |
|
current_span_index = i // num_return_sequences |
|
relations = extract_relations_from_model_output(sentence_pred) |
|
for relation in relations: |
|
relation["meta"] = { |
|
article_url: { |
|
"spans": [spans_boundaries[current_span_index]] |
|
} |
|
} |
|
kb.add_relation(relation, article_title, article_publish_date) |
|
i += 1 |
|
|
|
return kb |
|
|
|
def get_article(url): |
|
article = Article(url) |
|
article.download() |
|
article.parse() |
|
return article |
|
|
|
def from_url_to_kb(url, model, tokenizer): |
|
article = get_article(url) |
|
config = { |
|
"article_title": article.title, |
|
"article_publish_date": article.publish_date |
|
} |
|
kb = from_text_to_kb(article.text, model, tokenizer, article.url, **config) |
|
return kb |
|
|
|
def get_news_links(query, lang="en", region="US", pages=1): |
|
googlenews = GoogleNews(lang=lang, region=region) |
|
googlenews.search(query) |
|
all_urls = [] |
|
for page in range(pages): |
|
googlenews.get_page(page) |
|
all_urls += googlenews.get_links() |
|
return list(set(all_urls)) |
|
|
|
def from_urls_to_kb(urls, model, tokenizer, verbose=False): |
|
kb = KB() |
|
if verbose: |
|
print(f"{len(urls)} links to visit") |
|
for url in urls: |
|
if verbose: |
|
print(f"Visiting {url}...") |
|
try: |
|
kb_url = from_url_to_kb(url, model, tokenizer) |
|
kb.merge_with_kb(kb_url) |
|
except ArticleException: |
|
if verbose: |
|
print(f" Couldn't download article at url {url}") |
|
return kb |
|
|
|
def save_network_html(kb, filename="network.html"): |
|
|
|
net = Network(directed=True, width="700px", height="700px") |
|
|
|
|
|
color_entity = "#00FF00" |
|
for e in kb.entities: |
|
net.add_node(e, shape="circle", color=color_entity) |
|
|
|
|
|
for r in kb.relations: |
|
net.add_edge(r["head"], r["tail"], |
|
title=r["type"], label=r["type"]) |
|
|
|
|
|
net.repulsion( |
|
node_distance=200, |
|
central_gravity=0.2, |
|
spring_length=200, |
|
spring_strength=0.05, |
|
damping=0.09 |
|
) |
|
net.set_edge_smooth('dynamic') |
|
net.show(filename) |
|
|
|
def save_kb(kb, filename): |
|
with open(filename, "wb") as f: |
|
pickle.dump(kb, f) |
|
|
|
class CustomUnpickler(pickle.Unpickler): |
|
def find_class(self, module, name): |
|
if name == 'KB': |
|
return KB |
|
return super().find_class(module, name) |
|
|
|
def load_kb(filename): |
|
res = None |
|
with open(filename, "rb") as f: |
|
res = CustomUnpickler(f).load() |
|
return res |
|
|
|
class KB(): |
|
def __init__(self): |
|
self.entities = {} |
|
self.relations = [] |
|
|
|
self.sources = {} |
|
|
|
def merge_with_kb(self, kb2): |
|
for r in kb2.relations: |
|
article_url = list(r["meta"].keys())[0] |
|
source_data = kb2.sources[article_url] |
|
self.add_relation(r, source_data["article_title"], |
|
source_data["article_publish_date"]) |
|
|
|
def are_relations_equal(self, r1, r2): |
|
return all(r1[attr] == r2[attr] for attr in ["head", "type", "tail"]) |
|
|
|
def exists_relation(self, r1): |
|
return any(self.are_relations_equal(r1, r2) for r2 in self.relations) |
|
|
|
def merge_relations(self, r2): |
|
r1 = [r for r in self.relations |
|
if self.are_relations_equal(r2, r)][0] |
|
|
|
|
|
article_url = list(r2["meta"].keys())[0] |
|
if article_url not in r1["meta"]: |
|
r1["meta"][article_url] = r2["meta"][article_url] |
|
|
|
|
|
else: |
|
spans_to_add = [span for span in r2["meta"][article_url]["spans"] |
|
if span not in r1["meta"][article_url]["spans"]] |
|
r1["meta"][article_url]["spans"] += spans_to_add |
|
|
|
def get_wikipedia_data(self, candidate_entity): |
|
try: |
|
page = wikipedia.page(candidate_entity, auto_suggest=False) |
|
entity_data = { |
|
"title": page.title, |
|
"url": page.url, |
|
"summary": page.summary |
|
} |
|
return entity_data |
|
except: |
|
return None |
|
|
|
def add_entity(self, e): |
|
self.entities[e["title"]] = {k:v for k,v in e.items() if k != "title"} |
|
|
|
def add_relation(self, r, article_title, article_publish_date): |
|
|
|
candidate_entities = [r["head"], r["tail"]] |
|
entities = [self.get_wikipedia_data(ent) for ent in candidate_entities] |
|
|
|
|
|
if any(ent is None for ent in entities): |
|
return |
|
|
|
|
|
for e in entities: |
|
self.add_entity(e) |
|
|
|
|
|
r["head"] = entities[0]["title"] |
|
r["tail"] = entities[1]["title"] |
|
|
|
|
|
article_url = list(r["meta"].keys())[0] |
|
if article_url not in self.sources: |
|
self.sources[article_url] = { |
|
"article_title": article_title, |
|
"article_publish_date": article_publish_date |
|
} |
|
|
|
|
|
if not self.exists_relation(r): |
|
self.relations.append(r) |
|
else: |
|
self.merge_relations(r) |
|
|
|
def get_textual_representation(self): |
|
res = "" |
|
res += "### Entities\n" |
|
for e in self.entities.items(): |
|
|
|
e_temp = (e[0], {k:(v[:100] + "..." if k == "summary" else v) for k,v in e[1].items()}) |
|
res += f"- {e_temp}\n" |
|
res += "\n" |
|
res += "### Relations\n" |
|
for r in self.relations: |
|
res += f"- {r}\n" |
|
res += "\n" |
|
res += "### Sources\n" |
|
for s in self.sources.items(): |
|
res += f"- {s}\n" |
|
return res |
|
|
|
def save_network_html(kb, filename="network.html"): |
|
|
|
net = Network(directed=True, width="700px", height="700px", bgcolor="#eeeeee") |
|
|
|
|
|
color_entity = "#00FF00" |
|
for e in kb.entities: |
|
net.add_node(e, shape="circle", color=color_entity) |
|
|
|
|
|
for r in kb.relations: |
|
net.add_edge(r["head"], r["tail"], |
|
title=r["type"], label=r["type"]) |
|
|
|
|
|
net.repulsion( |
|
node_distance=200, |
|
central_gravity=0.2, |
|
spring_length=200, |
|
spring_strength=0.05, |
|
damping=0.09 |
|
) |
|
net.set_edge_smooth('dynamic') |
|
net.show(filename) |
|
|
|
nlp = get_spacy() |
|
|
|
sent_pipe, sum_pipe, ner_pipe, cross_encoder, kg_model, kg_tokenizer, emb_tokenizer, sbert = load_models() |
|
|