|
import streamlit as st |
|
from functions import * |
|
|
|
st.set_page_config(page_title="Earnings Summarization", page_icon="π") |
|
st.sidebar.header("Earnings Summarization") |
|
st.markdown("## Earnings Summarization with FaceBook-Bart") |
|
|
|
max_len= st.slider("Maximum length of the summarized text",min_value=50,max_value=200,step=10) |
|
min_len= st.slider("Minimum length of the summarized text",min_value=20,max_value=200,step=10) |
|
|
|
st.markdown("####") |
|
|
|
st.subheader("Summarized Earnings Call with matched Entities") |
|
|
|
if earnings_passages: |
|
text_to_summarize = chunk_and_preprocess_text(earnings_passages) |
|
summarized_text = sum_pipe(text_to_summarize,max_length=max_len,min_length=min_len,clean_up_tokenization_spaces=True,no_repeat_ngram_size=4) |
|
summarized_text = ' '.join([summ['summary_text'] for summ in summarized_text]) |
|
|
|
with st.spinner("Summarizing and matching entities, this takes a few seconds..."): |
|
|
|
entity_match_html = highlight_entities(text_to_summarize,summarized_text) |
|
st.markdown("####") |
|
|
|
with st.expander(label='Summarized Earnings Call',expanded=True): |
|
st.write(entity_match_html, unsafe_allow_html=True) |
|
|
|
st.markdown("####") |
|
|
|
summary_downloader(summarized_text) |
|
|
|
else: |
|
st.write("No text to summarize detected, please ensure you have entered the YouTube URL on the Sentiment Analysis page") |