|
import streamlit as st |
|
import pandas as pd |
|
import plotly_express as px |
|
import plotly.graph_objects as go |
|
from functions import * |
|
import validators |
|
|
|
st.set_page_config(page_title="Earnings Sentiment Analysis", page_icon="π") |
|
st.sidebar.header("Sentiment Analysis") |
|
st.markdown("## Earnings Sentiment Analysis with FinBert-Tone") |
|
|
|
if st.session_state.url or st.session_state.upload: |
|
|
|
@st.experimental_memo(suppress_st_warning=True) |
|
results, title = inference(st.session_state.url,st.session_state.upload) |
|
|
|
st.subheader(title) |
|
|
|
earnings_passages = results['text'] |
|
|
|
with open('earnings.txt','w') as f: |
|
f.write(earnings_passages) |
|
|
|
with open('earnings.txt','r') as f: |
|
earnings_passages = f.read() |
|
|
|
@st.experimental_memo(suppress_st_warning=True) |
|
earnings_sentiment, earnings_sentences = sentiment_pipe(earnings_passages) |
|
|
|
with st.expander("See Transcribed Earnings Text"): |
|
st.write(f"Number of Sentences: {len(earnings_sentences)}") |
|
|
|
st.write(earnings_passages) |
|
|
|
|
|
|
|
sen_df = pd.DataFrame(earnings_sentiment) |
|
sen_df['text'] = earnings_sentences |
|
grouped = pd.DataFrame(sen_df['label'].value_counts()).reset_index() |
|
grouped.columns = ['sentiment','count'] |
|
|
|
|
|
fig = px.bar(grouped, x='sentiment', y='count', color='sentiment', color_discrete_map={"Negative":"firebrick","Neutral":\ |
|
"navajowhite","Positive":"darkgreen"},\ |
|
title='Earnings Sentiment') |
|
|
|
fig.update_layout( |
|
showlegend=False, |
|
autosize=True, |
|
margin=dict( |
|
l=50, |
|
r=50, |
|
b=50, |
|
t=50, |
|
pad=4 |
|
) |
|
) |
|
|
|
col1, col2 = st.columns(2) |
|
|
|
col1.plotly_chart(fig) |
|
|
|
|
|
pos_perc = grouped[grouped['sentiment']=='Positive']['count'].iloc[0]*100/sen_df.shape[0] |
|
neg_perc = grouped[grouped['sentiment']=='Negative']['count'].iloc[0]*100/sen_df.shape[0] |
|
neu_perc = grouped[grouped['sentiment']=='Neutral']['count'].iloc[0]*100/sen_df.shape[0] |
|
|
|
sentiment_score = neu_perc+pos_perc-neg_perc |
|
|
|
fig = go.Figure() |
|
|
|
fig.add_trace(go.Indicator( |
|
mode = "delta", |
|
value = sentiment_score, |
|
domain = {'row': 1, 'column': 1})) |
|
|
|
fig.update_layout( |
|
template = {'data' : {'indicator': [{ |
|
'title': {'text': "Sentiment score"}, |
|
'mode' : "number+delta+gauge", |
|
'delta' : {'reference': 50}}] |
|
}}, |
|
autosize=False, |
|
width=400, |
|
height=500, |
|
margin=dict( |
|
l=20, |
|
r=50, |
|
b=50, |
|
pad=4 |
|
) |
|
) |
|
|
|
col2.plotly_chart(fig) |
|
|
|
|
|
fig = px.scatter(sen_df, y='label', color='label', size='score', hover_data=['text'], color_discrete_map={"Negative":"firebrick","Neutral":"navajowhite","Positive":"darkgreen"}, title='Sentiment Score Distribution') |
|
|
|
|
|
fig.update_layout( |
|
showlegend=False, |
|
autosize=False, |
|
width=1000, |
|
height=500, |
|
margin=dict( |
|
l=50, |
|
r=50, |
|
b=50, |
|
t=50, |
|
pad=4 |
|
) |
|
) |
|
|
|
st.plotly_chart(fig) |
|
|
|
else: |
|
st.write("No YouTube URL or file upload detected") |