nickmuchi's picture
Upload 17 files
50dd923
raw
history blame
2.43 kB
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
import os
import argparse
import torch
import transformers
from src.normalize_text import normalize
def save(tensor, split_path):
if not os.path.exists(os.path.dirname(split_path)):
os.makedirs(os.path.dirname(split_path))
with open(split_path, 'wb') as fout:
torch.save(tensor, fout)
def apply_tokenizer(path, tokenizer, normalize_text=False):
alltokens = []
lines = []
with open(path, "r", encoding="utf-8") as fin:
for k, line in enumerate(fin):
if normalize_text:
line = normalize(line)
lines.append(line)
if len(lines) > 1000000:
tokens = tokenizer.batch_encode_plus(lines, add_special_tokens=False)['input_ids']
tokens = [torch.tensor(x, dtype=torch.int) for x in tokens]
alltokens.extend(tokens)
lines = []
tokens = tokenizer.batch_encode_plus(lines, add_special_tokens=False)['input_ids']
tokens = [torch.tensor(x, dtype=torch.int) for x in tokens]
alltokens.extend(tokens)
alltokens = torch.cat(alltokens)
return alltokens
def tokenize_file(args):
filename = os.path.basename(args.datapath)
savepath = os.path.join(args.outdir, f"{filename}.pkl")
if os.path.exists(savepath):
if args.overwrite:
print(f"File {savepath} already exists, overwriting")
else:
print(f"File {savepath} already exists, exiting")
return
try:
tokenizer = transformers.AutoTokenizer.from_pretrained(args.tokenizer, local_files_only=True)
except:
tokenizer = transformers.AutoTokenizer.from_pretrained(args.tokenizer, local_files_only=False)
print(f"Encoding {args.datapath}...")
tokens = apply_tokenizer(args.datapath, tokenizer, normalize_text=args.normalize_text)
print(f"Saving at {savepath}...")
save(tokens, savepath)
if __name__ == '__main__':
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument("--datapath", type=str)
parser.add_argument("--outdir", type=str)
parser.add_argument("--tokenizer", type=str)
parser.add_argument("--overwrite", action="store_true")
parser.add_argument("--normalize_text", action="store_true")
args, _ = parser.parse_known_args()
tokenize_file(args)