nick-leland's picture
Updated the app for demo purposes
b43e654
raw
history blame
17 kB
import numpy as np
import traceback
import gradio as gr
from PIL import Image
from scipy import ndimage, interpolate
import matplotlib.pyplot as plt
from bulk_bulge_generation import definitions, smooth
# from transformers import pipeline
import fastai
from fastcore.all import *
from fastai.vision.all import *
from ultralytics import ASSETS, YOLO
import cv2
# def apply_vector_field_transform(image, func, radius, center=(0.5, 0.5), strength=1, edge_smoothness=0.1, center_smoothness=0.20):
# rows, cols = image.shape[:2]
# max_dim = max(rows, cols)
# print()
# print(f"Max_dim is {max_dim}")
# print()
#
# center_y = int(center[1] * rows)
# center_x = int(center[0] * cols)
# center_y = abs(rows - center_y)
#
# print(f"Image shape: {rows}x{cols}")
# print(f"Center: ({center_x}, {center_y})")
# print(f"Radius: {radius}, Strength: {strength}")
# print(f"Edge smoothness: {edge_smoothness}, Center smoothness: {center_smoothness}")
#
# y, x = np.ogrid[:rows, :cols]
# y = (y - center_y) / max_dim
# x = (x - center_x) / max_dim
#
# dist_from_center = np.sqrt(x**2 + y**2)
#
# z = func(x, y)
# print(f"Function output - min: {np.min(z)}, max: {np.max(z)}")
#
# gy, gx = np.gradient(z)
# print(f"Initial gradient - gx min: {np.min(gx)}, max: {np.max(gx)}")
# print(f"Initial gradient - gy min: {np.min(gy)}, max: {np.max(gy)}")
#
# # Avoid division by zero
# edge_smoothness = np.maximum(edge_smoothness, 1e-6)
# center_smoothness = np.maximum(center_smoothness, 1e-6)
#
# edge_mask = np.clip((radius - dist_from_center) / (radius * edge_smoothness), 0, 1)
# center_mask = np.clip((dist_from_center - radius * center_smoothness) / (radius * center_smoothness), 0, 1)
# mask = edge_mask * center_mask
#
# gx = gx * mask
# gy = gy * mask
#
# magnitude = np.sqrt(gx**2 + gy**2)
# magnitude[magnitude == 0] = 1 # Avoid division by zero
# gx = gx / magnitude
# gy = gy / magnitude
#
# scale_factor = strength * np.log(max_dim) / 100
# gx = gx * scale_factor * mask
# gy = gy * scale_factor * mask
#
# print(f"Final gradient - gx min: {np.min(gx)}, max: {np.max(gx)}")
# print(f"Final gradient - gy min: {np.min(gy)}, max: {np.max(gy)}")
#
# # Forward transformation
# x_new = x + gx
# y_new = y + gy
#
# x_new = x_new * max_dim + center_x
# y_new = y_new * max_dim + center_y
#
# x_new = np.clip(x_new, 0, cols - 1)
# y_new = np.clip(y_new, 0, rows - 1)
#
# # Inverse transformation
# x_inv = x - gx
# y_inv = y - gy
#
# x_inv = x_inv * max_dim + center_x
# y_inv = y_inv * max_dim + center_y
#
# x_inv = np.clip(x_inv, 0, cols - 1)
# y_inv = np.clip(y_inv, 0, rows - 1)
#
# # Apply transformations
# channels_forward = [ndimage.map_coordinates(image[..., i], [y_new, x_new], order=1, mode='reflect')
# for i in range(image.shape[2])]
# channels_inverse = [ndimage.map_coordinates(image[..., i], [y_inv, x_inv], order=1, mode='reflect')
# for i in range(image.shape[2])]
#
# transformed_image = np.dstack(channels_forward).astype(image.dtype)
# inverse_transformed_image = np.dstack(channels_inverse).astype(image.dtype)
#
# return transformed_image, inverse_transformed_image, (gx, gy)
def create_gradient_vector_field(gx, gy, image_shape, step=20, reverse=False):
"""
Create a gradient vector field visualization with option to reverse direction.
:param gx: X-component of the gradient
:param gy: Y-component of the gradient
:param image_shape: Shape of the original image (height, width)
:param step: Spacing between arrows
:param reverse: If True, reverse the direction of the arrows
:return: Gradient vector field as a numpy array (RGB image)
"""
rows, cols = image_shape
y, x = np.mgrid[step/2:rows:step, step/2:cols:step].reshape(2, -1).astype(int)
# Calculate the scale based on image size
max_dim = max(rows, cols)
scale = max_dim / 1000 # Adjusted for longer arrows
# Reverse direction if specified
direction = -1 if reverse else 1
fig, ax = plt.subplots(figsize=(cols/50, rows/50), dpi=100)
ax.quiver(x, y, direction * gx[y, x], direction * -gy[y, x],
scale=scale,
scale_units='width',
width=0.002 * max_dim / 500,
headwidth=8,
headlength=12,
headaxislength=0,
color='black',
minshaft=2,
minlength=0,
pivot='tail')
ax.set_xlim(0, cols)
ax.set_ylim(rows, 0)
ax.set_aspect('equal')
ax.axis('off')
fig.tight_layout(pad=0)
fig.canvas.draw()
vector_field = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
vector_field = vector_field.reshape(fig.canvas.get_width_height()[::-1] + (3,))
plt.close(fig)
return vector_field
def apply_gradient_transform(image, gx, gy):
"""
Apply the gradient transformation to an image.
:param image: Input image as a numpy array
:param gx: X-component of the gradient
:param gy: Y-component of the gradient
:return: Transformed image
"""
rows, cols = image.shape[:2]
y, x = np.mgrid[0:rows, 0:cols]
# Apply the transformation
x_new = x + gx
y_new = y + gy
# Ensure the new coordinates are within the image boundaries
x_new = np.clip(x_new, 0, cols - 1)
y_new = np.clip(y_new, 0, rows - 1)
# Apply the transformation to each channel
channels = []
for i in range(image.shape[2]):
channel = image[:,:,i]
transformed_channel = interpolate.griddata((y.flatten(), x.flatten()), channel.flatten(), (y_new, x_new), method='linear', fill_value=0)
channels.append(transformed_channel)
transformed_image = np.dstack(channels).astype(image.dtype)
return transformed_image
def generate_function_gradient(func, image_shape, radius, center=(0.5, 0.5), strength=1, edge_smoothness=0.1, center_smoothness=0.20):
rows, cols = image_shape[:2]
max_dim = max(rows, cols)
y, x = np.mgrid[0:rows, 0:cols].astype(np.float32)
y = (y - center[1] * rows) / max_dim
x = (x - center[0] * cols) / max_dim
dist_from_center = np.sqrt(x**2 + y**2)
z = func(x, y)
gy, gx = np.gradient(z)
edge_smoothness = np.maximum(edge_smoothness, 1e-6)
center_smoothness = np.maximum(center_smoothness, 1e-6)
edge_mask = np.clip((radius - dist_from_center) / (radius * edge_smoothness), 0, 1)
center_mask = np.clip((dist_from_center - radius * center_smoothness) / (radius * center_smoothness), 0, 1)
mask = edge_mask * center_mask
gx *= mask
gy *= mask
magnitude = np.sqrt(gx**2 + gy**2)
max_magnitude = np.max(magnitude)
if max_magnitude > 0:
gx /= max_magnitude
gy /= max_magnitude
# Increase the base scale factor
base_scale = radius * max_dim * 0.2 # Increased from 0.1 to 0.2
# Apply a non-linear scaling to the strength
adjusted_strength = np.power(strength, 1.5) # This will make the effect more pronounced at higher strengths
# Increase the maximum strength multiplier
scale_factor = base_scale * np.clip(adjusted_strength, 0, 3) # Increased max from 2 to 3
# Apply an additional scaling factor based on image size
size_factor = np.log(max_dim) / np.log(1000) # This will be 1 for 1000x1000 images, larger for bigger images
scale_factor *= size_factor
gx *= scale_factor
gy *= scale_factor
print(f"Final scale factor: {scale_factor}")
print(f"Final gradient ranges: gx [{np.min(gx)}, {np.max(gx)}], gy [{np.min(gy)}, {np.max(gy)}]")
return gx, gy
#############################
# MAIN FUNCTION HERE
#############################
# Version Check
print(f"NumPy version: {np.__version__}")
print(f"PyTorch version: {torch.__version__}")
print(f"FastAI version: {fastai.__version__}")
learn_bias = load_learner('model_bias.pkl')
learn_fresh = load_learner('model_fresh.pkl')
# Loads the YOLO Model
model_bulge = YOLO("best.onnx")
# modelv8x = YOLO("yolov8x.pt")
# modelv8n = YOLO("yolov8n.pt")
def predict_image(img, model, conf_threshold, iou_threshold):
"""Predicts objects in an image using a YOLOv8 model with adjustable confidence and IOU thresholds."""
results = model.predict(
source=img,
conf=conf_threshold,
iou=iou_threshold,
show_labels=True,
show_conf=True,
imgsz=640,
)
for r in results:
im_array = r.plot()
im = Image.fromarray(im_array[..., ::-1])
return im
def transform_image(image, func_choice, randomization_check, radius, center_x, center_y, strength, reverse_gradient=True, spiral_frequency=1):
with Image.open(image) as img:
img = img.convert('RGB')
I = np.array(img)
# Downsample large images
max_size = 640 # Increased from 512 to allow for more detail, decreased from 1024 to match YOLO model training.
if max(I.shape[:2]) > max_size:
scale = max_size / max(I.shape[:2])
new_size = (int(I.shape[1] * scale), int(I.shape[0] * scale))
I = cv2.resize(I, new_size, interpolation=cv2.INTER_AREA)
print(f"Downsampled image to {I.shape}")
##################################
# Transformation Functions #
##################################
def pinch(x, y):
r = np.sqrt(x**2 + y**2)
return r
def zoom(x, y):
return x**2 + y**2
def shift(x, y):
return np.arctan2(y, x)
def bulge(x, y):
r = -np.sqrt(x**2 + y**2)
return r
def spiral(x, y, frequency=1):
r = np.sqrt(x**2 + y**2)
theta = np.arctan2(y, x)
return r * np.sin(theta - frequency * r)
rng = np.random.default_rng()
if randomization_check:
radius, location, strength, edge_smoothness = definitions(rng)
center_x, center_y = location
center_smoothness = edge_smoothness
else:
edge_smoothness, center_smoothness = smooth(rng, strength)
if func_choice == "Pinch":
func = pinch
edge_smoothness = 0
center_smoothness = 0
elif func_choice == "Spiral":
func = shift
edge_smoothness = 0
center_smoothness = 0
elif func_choice == "Bulge":
func = bulge
edge_smoothness = 0
center_smoothness = 0
elif func_choice == "Volcano":
func = bulge
edge_smoothness = 0
center_smoothness = 0
elif func_choice == "Shift Up":
func = lambda x, y: spiral(x, y, frequency=spiral_frequency)
edge_smoothness = 0
center_smoothness = 0
print(f"Function choice: {func_choice}")
print(f"Input image shape: {I.shape}")
print(f"Radius: {radius}, Center: ({center_x}, {center_y}), Strength: {strength}")
# strength = strength * 2 # This allows for stronger effects
try:
strength = 0.8
# Generate gradients
gx, gy = generate_function_gradient(func, I.shape, radius, (center_x, center_y), strength, edge_smoothness, center_smoothness)
# Vectorized transformation
rows, cols = I.shape[:2]
y, x = np.mgrid[0:rows, 0:cols].astype(np.float32)
x_new = x + gx
y_new = y + gy
x_new = np.clip(x_new, 0, cols - 1)
y_new = np.clip(y_new, 0, rows - 1)
transformed = cv2.remap(I, x_new, y_new, cv2.INTER_LINEAR)
inv_gx, inv_gy = -gx, -gy
x_inv = x + inv_gx
y_inv = y + inv_gy
x_inv = np.clip(x_inv, 0, cols - 1)
y_inv = np.clip(y_inv, 0, rows - 1)
inverse_transformed = cv2.remap(I, x_inv, y_inv, cv2.INTER_LINEAR)
# Apply Inverse to detected location
YOLO_image = predict_image(transformed, model_bulge, 0.5, 0.5)
applied_transformed = cv2.remap(transformed, x_inv, y_inv, cv2.INTER_LINEAR)
# print(f"Transformed image shape: {transformed.shape}")
# print(f"Inverse transformed image shape: {inverse_transformed.shape}")
vector_field = create_gradient_vector_field(gx, gy, I.shape[:2], reverse=reverse_gradient)
inverted_vector_field = create_gradient_vector_field(inv_gx, inv_gy, I.shape[:2], reverse=False)
# print(f"Vector field shape: {vector_field.shape}")
# print(f"Inverted vector field shape: {inverted_vector_field.shape}")
# If we downsampled earlier, upsample the results back to original size
if max(I.shape[:2]) != max(np.asarray(Image.open(image)).shape[:2]):
original_size = np.asarray(Image.open(image)).shape[:2][::-1]
transformed = cv2.resize(transformed, original_size, interpolation=cv2.INTER_LINEAR)
inverse_transformed = cv2.resize(inverse_transformed, original_size, interpolation=cv2.INTER_LINEAR)
applied_transformed = cv2.resize(applied_transformed, original_size, interpolation=cv2.INTER_LINEAR)
vector_field = cv2.resize(vector_field, original_size, interpolation=cv2.INTER_LINEAR)
inverted_vector_field = cv2.resize(inverted_vector_field, original_size, interpolation=cv2.INTER_LINEAR)
except Exception as e:
print(f"Error in transformation: {str(e)}")
traceback.print_exc()
transformed = np.zeros_like(I)
inverse_transformed = np.zeros_like(I)
vector_field = np.zeros_like(I)
inverted_vector_field = np.zeros_like(I)
result = Image.fromarray(transformed.astype('uint8'), 'RGB')
# categories = ['Distorted', 'Maze']
# def clean_output(result_values):
# pred, idx, probs = result_values
# return dict(zip(categories, map(float, probs)))
# Outdated, changing to a classification basis
# result_bias = learn_bias.predict(result)
# result_fresh = learn_fresh.predict(result)
# result_bias_final = clean_output(result_bias)
# result_fresh_final = clean_output(result_fresh)
result_localization = model_bulge.predict(transformed, save=True)
print(result_localization, "bulge")
# result_localization1 = modelv8n.predict(transformed, save=True)
# print(result_localization1, "modelv8n")
# result_localization2 = modelv8x.predict(transformed, save=True)
# print(result_localization2, "modelv8x")
# YOLO_image1 = predict_image(transformed, modelv8n, 0.5, 0.5)
# YOLO_image2 = predict_image(transformed, modelv8x, 0.5, 0.5)
# return transformed, YOLO_image, YOLO_image1, YOLO_image2, result_bias_final, result_fresh_final, vector_field, inverse_transformed, inverted_vector_field
# return transformed, YOLO_image, result_bias_final, result_fresh_final, vector_field, inverse_transformed, inverted_vector_field
return transformed, YOLO_image, vector_field, inverse_transformed, inverted_vector_field, applied_transformed
demo = gr.Interface(
fn=transform_image,
inputs=[
gr.Image(type="filepath"),
gr.Dropdown(["Pinch", "Spiral", "Shift Up", "Bulge", "Volcano"], value="Bulge", label="Function"),
gr.Checkbox(label="Randomize inputs?"),
gr.Slider(0, 0.5, value=0.25, label="Radius (as fraction of image size)"),
gr.Slider(0, 1, value=0.5, label="Center X"),
gr.Slider(0, 1, value=0.5, label="Center Y"),
gr.Slider(0, 1, value=0.5, label="Strength"),
# gr.Slider(0, 1, value=0.5, label="Edge Smoothness"),
# gr.Slider(0, 0.5, value=0.1, label="Center Smoothness")
# gr.Checkbox(label="Reverse Gradient Direction"),
],
examples=[
[np.asarray(Image.open("examples/1500_maze.jpg")), "Bulge", True, 0.25, 0.5, 0.5, 0.5],
[np.asarray(Image.open("examples/2048_maze.jpg")), "Bulge", True, 0.25, 0.5, 0.5, 0.5],
[np.asarray(Image.open("examples/2300_fresh.jpg")), "Bulge", True, 0.25, 0.5, 0.5, 0.5],
[np.asarray(Image.open("examples/50_fresh.jpg")), "Bulge", True, 0.25, 0.5, 0.5, 0.5]
],
outputs=[
gr.Image(label="Transformed Image"),
gr.Image(label="bulge_model Model Classification"),
# gr.Image(label="yolov8n Model Classification"),
# gr.Image(label="yolov8x Model Classification"),
# gr.Label(),
# gr.Label(),
gr.Image(label="Gradient Vector Field"),
gr.Image(label="Inverse Gradient"),
gr.Image(label="Inverted Vector Field"),
gr.Image(label="Fixed Image")
],
title="Image Transformation Demo!",
article="If you like this demo, please star the github repository for the project! Located [here!](https://github.com/nick-leland/DistortionML)",
description=""
)
demo.launch(share=True)