Spaces:
Running
Running
nicholasKluge
commited on
Commit
•
d1e315a
1
Parent(s):
9ee515e
Update app.py
Browse files
app.py
CHANGED
@@ -1,38 +1,69 @@
|
|
1 |
-
|
|
|
2 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
-
|
5 |
-
use_auth_token="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")
|
6 |
-
model = AutoModelForCausalLM.from_pretrained('nicholasKluge/Aira-Instruct-124M',
|
7 |
-
use_auth_token="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")
|
8 |
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
with gr.Blocks(theme='freddyaboulton/dracula_revamped') as demo:
|
|
|
|
|
|
|
12 |
|
13 |
-
gr.
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
chatbot = gr.Chatbot(label="Aira").style(height=300)
|
19 |
-
|
20 |
-
with gr.Column(scale=2):
|
21 |
-
|
22 |
-
with gr.Tab(label="Parameters ⚙️"):
|
23 |
-
top_k = gr.Slider( minimum=10, maximum=100, value=50, step=5, interactive=True, label="Top-k",)
|
24 |
-
top_p = gr.Slider( minimum=0.1, maximum=1.0, value=0.70, step=0.05, interactive=True, label="Top-p",)
|
25 |
-
temperature = gr.Slider( minimum=0.001, maximum=2.0, value=0.1, step=0.1, interactive=True, label="Temperature",)
|
26 |
-
max_length = gr.Slider( minimum=10, maximum=500, value=100, step=10, interactive=True, label="Max Length",)
|
27 |
-
|
28 |
-
msg = gr.Textbox(label="Write a question or comment to Aira", placeholder="Hi Aira, how are you?")
|
29 |
-
clear = gr.Button("Clear Conversation 🧹")
|
30 |
gr.Markdown(disclaimer)
|
31 |
|
32 |
-
def
|
33 |
-
|
|
|
|
|
34 |
|
35 |
-
|
|
|
|
|
36 |
bos_token_id=tokenizer.bos_token_id,
|
37 |
pad_token_id=tokenizer.pad_token_id,
|
38 |
eos_token_id=tokenizer.eos_token_id,
|
@@ -43,12 +74,20 @@ with gr.Blocks(theme='freddyaboulton/dracula_revamped') as demo:
|
|
43 |
top_p=top_p,
|
44 |
temperature=temperature,
|
45 |
num_return_sequences=1)
|
46 |
-
|
47 |
-
chat_history.append((f"👤 {message}", f"""🤖 {tokenizer.decode(response[0], skip_special_tokens=True).replace(message, "")}"""))
|
48 |
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
|
|
|
54 |
demo.launch()
|
|
|
1 |
+
import time
|
2 |
+
import torch
|
3 |
import gradio as gr
|
4 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
5 |
+
|
6 |
+
model_id = "nicholasKluge/Aira-Instruct-774M"
|
7 |
+
token = "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"
|
8 |
+
|
9 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
10 |
+
|
11 |
+
|
12 |
+
if device == "cuda":
|
13 |
+
model = AutoModelForCausalLM.from_pretrained(model_id, use_auth_token=token, load_in_8bit=True)
|
14 |
+
|
15 |
+
else:
|
16 |
+
model = AutoModelForCausalLM.from_pretrained(model_id, use_auth_token=token)
|
17 |
+
|
18 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id, use_auth_token=token)
|
19 |
+
model.to(device)
|
20 |
+
|
21 |
+
intro = """
|
22 |
+
## What is `Aira`?
|
23 |
+
|
24 |
+
[`Aira`](https://github.com/Nkluge-correa/Aira-EXPERT) is a `chatbot` designed to simulate the way a human (expert) would behave during a round of questions and answers (Q&A). `Aira` has many iterations, from a closed-domain chatbot based on pre-defined rules to an open-domain chatbot achieved via fine-tuning pre-trained large language models. Aira has an area of expertise that comprises topics related to AI Ethics and AI Safety research.
|
25 |
|
26 |
+
We developed our open-domain conversational chatbots via conditional text generation/instruction fine-tuning. This approach has a lot of limitations. Even though we can make a chatbot that can answer questions about anything, forcing the model to produce good-quality responses is hard. And by good, we mean **factual** and **nontoxic** text. This leads us to two of the most common problems of generative models used in conversational applications:
|
|
|
|
|
|
|
27 |
|
28 |
+
🤥 Generative models can perpetuate the generation of pseudo-informative content, that is, false information that may appear truthful.
|
29 |
+
|
30 |
+
🤬 In certain types of tasks, generative models can produce harmful and discriminatory content inspired by historical stereotypes against sensitive attributes (for example, gender, race, and religion).
|
31 |
+
|
32 |
+
`Aira` is intended only for academic research. For more information, visit our [HuggingFace models](https://huggingface.co/nicholasKluge) to see how we developed `Aira`.
|
33 |
+
"""
|
34 |
+
|
35 |
+
disclaimer = """
|
36 |
+
**Disclaimer:** You should use this demo for research purposes only. Moderators do not censor the model output, and the authors do not endorse the opinions generated by this model.
|
37 |
+
|
38 |
+
If you would like to complain about any message produced by `Aira`, please contact [nicholas@airespucrs.org](mailto:nicholas@airespucrs.org).
|
39 |
+
"""
|
40 |
|
41 |
with gr.Blocks(theme='freddyaboulton/dracula_revamped') as demo:
|
42 |
+
|
43 |
+
gr.Markdown("""<h1><center>Aira Demo 🤓💬</h1></center>""")
|
44 |
+
gr.Markdown(intro)
|
45 |
|
46 |
+
chatbot = gr.Chatbot(label="Aira", height=600)
|
47 |
+
|
48 |
+
with gr.Accordion(label="Parameters ⚙️", open=False):
|
49 |
+
top_k = gr.Slider( minimum=10, maximum=100, value=50, step=5, interactive=True, label="Top-k",)
|
50 |
+
top_p = gr.Slider( minimum=0.1, maximum=1.0, value=0.70, step=0.05, interactive=True, label="Top-p",)
|
51 |
+
temperature = gr.Slider( minimum=0.001, maximum=2.0, value=0.1, step=0.1, interactive=True, label="Temperature",)
|
52 |
+
max_length = gr.Slider( minimum=10, maximum=500, value=100, step=10, interactive=True, label="Max Length",)
|
53 |
|
54 |
+
msg = gr.Textbox(label="Write a question or comment to Aira ...", placeholder="Hi Aira, how are you?")
|
55 |
+
|
56 |
+
clear = gr.ClearButton([msg, chatbot])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
gr.Markdown(disclaimer)
|
58 |
|
59 |
+
def user(user_message, chat_history):
|
60 |
+
return gr.update(value=user_message, interactive=True), chat_history + [["👤 " + user_message, None]]
|
61 |
+
|
62 |
+
def generate_response(user_msg, top_p, temperature, top_k, max_length, chat_history):
|
63 |
|
64 |
+
inputs = tokenizer(tokenizer.bos_token + user_msg + tokenizer.eos_token, return_tensors="pt").to(device)
|
65 |
+
|
66 |
+
generated_response = model.generate(**inputs,
|
67 |
bos_token_id=tokenizer.bos_token_id,
|
68 |
pad_token_id=tokenizer.pad_token_id,
|
69 |
eos_token_id=tokenizer.eos_token_id,
|
|
|
74 |
top_p=top_p,
|
75 |
temperature=temperature,
|
76 |
num_return_sequences=1)
|
|
|
|
|
77 |
|
78 |
+
bot_message = tokenizer.decode(generated_response[0], skip_special_tokens=True).replace(user_msg, "")
|
79 |
+
|
80 |
+
chat_history[-1][1] = "🤖 "
|
81 |
+
for character in bot_message:
|
82 |
+
chat_history[-1][1] += character
|
83 |
+
time.sleep(0.005)
|
84 |
+
yield chat_history
|
85 |
+
|
86 |
+
response = msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(
|
87 |
+
generate_response, [msg, top_p, temperature, top_k, max_length, chatbot], chatbot
|
88 |
+
)
|
89 |
+
response.then(lambda: gr.update(interactive=True), None, [msg], queue=False)
|
90 |
+
msg.submit(lambda x: gr.update(value=''), [],[msg])
|
91 |
|
92 |
+
demo.queue()
|
93 |
demo.launch()
|