import gradio as gr | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
import torch | |
# Load model directly | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
tokenizer = AutoTokenizer.from_pretrained("microsoft/Phi-3.5-mini-instruct", trust_remote_code=True) | |
model = AutoModelForCausalLM.from_pretrained("microsoft/Phi-3.5-mini-instruct", | |
device_map="auto", | |
trust_remote_code=True) | |
# Function to generate text based on the prompt | |
def generate_text(prompt, max_length=100): | |
inputs = tokenizer(prompt, return_tensors="pt") | |
inputs = inputs.to(model.device) | |
outputs = model.generate(**inputs, max_length=max_length) | |
return tokenizer.decode(outputs[0], skip_special_tokens=True) | |
# Create Gradio interface | |
iface = gr.Interface( | |
fn=generate_text, | |
inputs="text", | |
outputs="text", | |
title="Microsoft Phi 3.5B Instruct - Text Generation" | |
) | |
iface.launch() | |