import gradio as gr from transformers import AutoTokenizer, AutoModelForCausalLM import torch # Load model directly from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("microsoft/Phi-3.5-mini-instruct", trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained("microsoft/Phi-3.5-mini-instruct", device_map="auto", trust_remote_code=True) # Function to generate text based on the prompt def generate_text(prompt, max_length=100): inputs = tokenizer(prompt, return_tensors="pt") inputs = inputs.to(model.device) outputs = model.generate(**inputs, max_length=max_length) return tokenizer.decode(outputs[0], skip_special_tokens=True) # Create Gradio interface iface = gr.Interface( fn=generate_text, inputs="text", outputs="text", title="Microsoft Phi 3.5B Instruct - Text Generation" ) iface.launch()