oai_chat / app.py
ndurner's picture
o1 release
ba38317
raw
history blame
17.4 kB
import gradio as gr
import base64
import os
from openai import OpenAI
import json
import fitz
from PIL import Image
import io
from settings_mgr import generate_download_settings_js, generate_upload_settings_js
from doc2json import process_docx
dump_controls = False
log_to_console = False
temp_files = []
def encode_image(image_data):
"""Generates a prefix for image base64 data in the required format for the
four known image formats: png, jpeg, gif, and webp.
Args:
image_data: The image data, encoded in base64.
Returns:
A string containing the prefix.
"""
# Get the first few bytes of the image data.
magic_number = image_data[:4]
# Check the magic number to determine the image type.
if magic_number.startswith(b'\x89PNG'):
image_type = 'png'
elif magic_number.startswith(b'\xFF\xD8'):
image_type = 'jpeg'
elif magic_number.startswith(b'GIF89a'):
image_type = 'gif'
elif magic_number.startswith(b'RIFF'):
if image_data[8:12] == b'WEBP':
image_type = 'webp'
else:
# Unknown image type.
raise Exception("Unknown image type")
else:
# Unknown image type.
raise Exception("Unknown image type")
return f"data:image/{image_type};base64,{base64.b64encode(image_data).decode('utf-8')}"
def process_pdf_img(pdf_fn: str):
pdf = fitz.open(pdf_fn)
message_parts = []
for page in pdf.pages():
# Create a transformation matrix for rendering at the calculated scale
mat = fitz.Matrix(0.6, 0.6)
# Render the page to a pixmap
pix = page.get_pixmap(matrix=mat, alpha=False)
# Convert pixmap to PIL Image
img = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
# Convert PIL Image to bytes
img_byte_arr = io.BytesIO()
img.save(img_byte_arr, format='PNG')
img_byte_arr = img_byte_arr.getvalue()
# Encode image to base64
base64_encoded = base64.b64encode(img_byte_arr).decode('utf-8')
# Construct the data URL
image_url = f"data:image/png;base64,{base64_encoded}"
# Append the message part
message_parts.append({
"type": "text",
"text": f"Page {page.number} of file '{pdf_fn}'"
})
message_parts.append({
"type": "image_url",
"image_url": {
"url": image_url,
"detail": "high"
}
})
pdf.close()
return message_parts
def encode_file(fn: str) -> list:
user_msg_parts = []
if fn.endswith(".docx"):
user_msg_parts.append({"type": "text", "text": process_docx(fn)})
elif fn.endswith(".pdf"):
user_msg_parts.extend(process_pdf_img(fn))
else:
with open(fn, mode="rb") as f:
content = f.read()
isImage = False
if isinstance(content, bytes):
try:
# try to add as image
content = encode_image(content)
isImage = True
except:
# not an image, try text
content = content.decode('utf-8', 'replace')
else:
content = str(content)
if isImage:
user_msg_parts.append({"type": "image_url",
"image_url":{"url": content}})
else:
user_msg_parts.append({"type": "text", "text": content})
return user_msg_parts
def undo(history):
history.pop()
return history
def dump(history):
return str(history)
def load_settings():
# Dummy Python function, actual loading is done in JS
pass
def save_settings(acc, sec, prompt, temp, tokens, model):
# Dummy Python function, actual saving is done in JS
pass
def process_values_js():
return """
() => {
return ["oai_key", "system_prompt", "seed"];
}
"""
def bot(message, history, oai_key, system_prompt, seed, temperature, max_tokens, model):
try:
client = OpenAI(
api_key=oai_key
)
if model == "whisper":
result = ""
whisper_prompt = system_prompt
for human, assi in history:
if human is not None:
if type(human) is tuple:
pass
else:
whisper_prompt += f"\n{human}"
if assi is not None:
whisper_prompt += f"\n{assi}"
if message["text"]:
whisper_prompt += message["text"]
if message.files:
for file in message.files:
audio_fn = os.path.basename(file.path)
with open(file.path, "rb") as f:
transcription = client.audio.transcriptions.create(
model="whisper-1",
prompt=whisper_prompt,
file=f,
response_format="text"
)
whisper_prompt += f"\n{transcription}"
result += f"\n``` transcript {audio_fn}\n {transcription}\n```"
yield result
elif model == "dall-e-3":
response = client.images.generate(
model=model,
prompt=message["text"],
size="1792x1024",
quality="hd",
n=1,
)
yield gr.Image(response.data[0].url)
else:
seed_i = None
if seed:
seed_i = int(seed)
if log_to_console:
print(f"bot history: {str(history)}")
history_openai_format = []
user_msg_parts = []
if system_prompt:
if not model.startswith("o1"):
role = "system"
else:
role = "user"
history_openai_format.append({"role": role, "content": system_prompt})
for human, assi in history:
if human is not None:
if type(human) is tuple:
user_msg_parts.extend(encode_file(human[0]))
else:
user_msg_parts.append({"type": "text", "text": human})
if assi is not None:
if user_msg_parts:
history_openai_format.append({"role": "user", "content": user_msg_parts})
user_msg_parts = []
history_openai_format.append({"role": "assistant", "content": assi})
if message["text"]:
user_msg_parts.append({"type": "text", "text": message["text"]})
if message["files"]:
for file in message["files"]:
user_msg_parts.extend(encode_file(file))
history_openai_format.append({"role": "user", "content": user_msg_parts})
user_msg_parts = []
if log_to_console:
print(f"br_prompt: {str(history_openai_format)}")
if model.startswith("o1"):
response = client.chat.completions.create(
model=model,
messages= history_openai_format,
seed=seed_i,
)
yield response.choices[0].message.content
if log_to_console:
print(f"usage: {response.usage}")
else:
response = client.chat.completions.create(
model=model,
messages= history_openai_format,
temperature=temperature,
seed=seed_i,
max_tokens=max_tokens,
stream=True,
stream_options={"include_usage": True}
)
partial_response=""
for chunk in response:
if chunk.choices:
txt = ""
for choice in chunk.choices:
cont = choice.delta.content
if cont:
txt += cont
partial_response += txt
yield partial_response
if chunk.usage and log_to_console:
print(f"usage: {chunk.usage}")
if log_to_console:
print(f"br_result: {str(history)}")
except Exception as e:
raise gr.Error(f"Error: {str(e)}")
def import_history(history, file):
with open(file.name, mode="rb") as f:
content = f.read()
if isinstance(content, bytes):
content = content.decode('utf-8', 'replace')
else:
content = str(content)
os.remove(file.name)
# Deserialize the JSON content
import_data = json.loads(content)
# Check if 'history' key exists for backward compatibility
if 'history' in import_data:
history = import_data['history']
system_prompt.value = import_data.get('system_prompt', '') # Set default if not present
else:
# Assume it's an old format with only history data
history = import_data
return history, system_prompt.value # Return system prompt value to be set in the UI
with gr.Blocks(delete_cache=(86400, 86400)) as demo:
gr.Markdown("# OAI Chat (Nils' Version™️)")
with gr.Accordion("Startup"):
gr.Markdown("""Use of this interface permitted under the terms and conditions of the
[MIT license](https://github.com/ndurner/oai_chat/blob/main/LICENSE).
Third party terms and conditions apply, particularly
those of the LLM vendor (OpenAI) and hosting provider (Hugging Face). This app and the AI models may make mistakes, so verify any outputs.""")
oai_key = gr.Textbox(label="OpenAI API Key", elem_id="oai_key")
model = gr.Dropdown(label="Model", value="gpt-4-turbo", allow_custom_value=True, elem_id="model",
choices=["gpt-4-turbo", "gpt-4o-2024-05-13", "gpt-4o-2024-11-20", "o1-mini", "o1", "chatgpt-4o-latest", "gpt-4o", "gpt-4o-mini", "gpt-4-turbo-preview", "gpt-4-1106-preview", "gpt-4", "gpt-4-vision-preview", "gpt-3.5-turbo", "gpt-3.5-turbo-16k", "gpt-3.5-turbo-1106", "whisper", "dall-e-3"])
system_prompt = gr.TextArea("You are a helpful yet diligent AI assistant. Answer faithfully and factually correct. Respond with 'I do not know' if uncertain.", label="System Prompt", lines=3, max_lines=250, elem_id="system_prompt")
seed = gr.Textbox(label="Seed", elem_id="seed")
temp = gr.Slider(0, 2, label="Temperature", elem_id="temp", value=1)
max_tokens = gr.Slider(1, 16384, label="Max. Tokens", elem_id="max_tokens", value=800)
save_button = gr.Button("Save Settings")
load_button = gr.Button("Load Settings")
dl_settings_button = gr.Button("Download Settings")
ul_settings_button = gr.Button("Upload Settings")
load_button.click(load_settings, js="""
() => {
let elems = ['#oai_key textarea', '#system_prompt textarea', '#seed textarea', '#temp input', '#max_tokens input', '#model'];
elems.forEach(elem => {
let item = document.querySelector(elem);
let event = new InputEvent('input', { bubbles: true });
item.value = localStorage.getItem(elem.split(" ")[0].slice(1)) || '';
item.dispatchEvent(event);
});
}
""")
save_button.click(save_settings, [oai_key, system_prompt, seed, temp, max_tokens, model], js="""
(oai, sys, seed, temp, ntok, model) => {
localStorage.setItem('oai_key', oai);
localStorage.setItem('system_prompt', sys);
localStorage.setItem('seed', seed);
localStorage.setItem('temp', document.querySelector('#temp input').value);
localStorage.setItem('max_tokens', document.querySelector('#max_tokens input').value);
localStorage.setItem('model', model);
}
""")
control_ids = [('oai_key', '#oai_key textarea'),
('system_prompt', '#system_prompt textarea'),
('seed', '#seed textarea'),
('temp', '#temp input'),
('max_tokens', '#max_tokens input'),
('model', '#model')]
controls = [oai_key, system_prompt, seed, temp, max_tokens, model]
dl_settings_button.click(None, controls, js=generate_download_settings_js("oai_chat_settings.bin", control_ids))
ul_settings_button.click(None, None, None, js=generate_upload_settings_js(control_ids))
chat = gr.ChatInterface(fn=bot, multimodal=True, additional_inputs=controls, autofocus = False)
chat.textbox.file_count = "multiple"
chatbot = chat.chatbot
chatbot.show_copy_button = True
chatbot.height = 450
if dump_controls:
with gr.Row():
dmp_btn = gr.Button("Dump")
txt_dmp = gr.Textbox("Dump")
dmp_btn.click(dump, inputs=[chatbot], outputs=[txt_dmp])
with gr.Accordion("Import/Export", open = False):
import_button = gr.UploadButton("History Import")
export_button = gr.Button("History Export")
export_button.click(lambda: None, [chatbot, system_prompt], js="""
(chat_history, system_prompt) => {
const export_data = {
history: chat_history,
system_prompt: system_prompt
};
const history_json = JSON.stringify(export_data);
const blob = new Blob([history_json], {type: 'application/json'});
const url = URL.createObjectURL(blob);
const a = document.createElement('a');
a.href = url;
a.download = 'chat_history.json';
document.body.appendChild(a);
a.click();
document.body.removeChild(a);
URL.revokeObjectURL(url);
}
""")
dl_button = gr.Button("File download")
dl_button.click(lambda: None, [chatbot], js="""
(chat_history) => {
const languageToExt = {
'python': 'py',
'javascript': 'js',
'typescript': 'ts',
'csharp': 'cs',
'ruby': 'rb',
'shell': 'sh',
'bash': 'sh',
'markdown': 'md',
'yaml': 'yml',
'rust': 'rs',
'golang': 'go',
'kotlin': 'kt'
};
const contentRegex = /```(?:([^\\n]+)?\\n)?([\\s\\S]*?)```/;
const match = contentRegex.exec(chat_history[chat_history.length - 1][1]);
if (match && match[2]) {
const specifier = match[1] ? match[1].trim() : '';
const content = match[2];
let filename = 'download';
let fileExtension = 'txt'; // default
if (specifier) {
if (specifier.includes('.')) {
// If specifier contains a dot, treat it as a filename
const parts = specifier.split('.');
filename = parts[0];
fileExtension = parts[1];
} else {
// Use mapping if exists, otherwise use specifier itself
const langLower = specifier.toLowerCase();
fileExtension = languageToExt[langLower] || langLower;
filename = 'code';
}
}
const blob = new Blob([content], {type: 'text/plain'});
const url = URL.createObjectURL(blob);
const a = document.createElement('a');
a.href = url;
a.download = `${filename}.${fileExtension}`;
document.body.appendChild(a);
a.click();
document.body.removeChild(a);
URL.revokeObjectURL(url);
}
}
""")
import_button.upload(import_history, inputs=[chatbot, import_button], outputs=[chatbot, system_prompt])
demo.unload(lambda: [os.remove(file) for file in temp_files])
demo.launch()