multi-hmr / model.py
fbaradel's picture
first commit
934fdee
raw
history blame
20.3 kB
# Multi-HMR
# Copyright (c) 2024-present NAVER Corp.
# CC BY-NC-SA 4.0 license
from torch import nn
import torch
import numpy as np
import roma
import copy
from utils import unpatch, inverse_perspective_projection, undo_focal_length_normalization, undo_log_depth
from blocks import Dinov2Backbone, FourierPositionEncoding, TransformerDecoder, SMPL_Layer
from utils import rot6d_to_rotmat, rebatch, pad_to_max
import torch.nn as nn
import numpy as np
import einops
from utils.constants import MEAN_PARAMS
class Model(nn.Module):
""" A ViT backbone followed by a "HPH" head (stack of cross attention layers with queries corresponding to detected humans.) """
def __init__(self,
backbone='dinov2_vitb14',
img_size=896,
camera_embedding='geometric', # geometric encodes viewing directions with fourrier encoding
camera_embedding_num_bands=16, # increase the size of the camera embedding
camera_embedding_max_resolution=64, # does not increase the size of the camera embedding
nearness=True, # regress log(1/z)
xat_depth=2, # number of cross attention block (SA, CA, MLP) in the HPH head.
xat_num_heads=8, # Number of attention heads
dict_smpl_layer=None,
person_center='head',
clip_dist=True,
*args, **kwargs):
super().__init__()
# Save options
self.img_size = img_size
self.nearness = nearness
self.clip_dist = clip_dist,
self.xat_depth = xat_depth
self.xat_num_heads = xat_num_heads
# Setup backbone
self.backbone = Dinov2Backbone(backbone)
self.embed_dim = self.backbone.embed_dim
self.patch_size = self.backbone.patch_size
assert self.img_size % self.patch_size == 0, "Invalid img size"
# Camera instrinsics
self.fovn = 60
self.camera_embedding = camera_embedding
self.camera_embed_dim = 0
if self.camera_embedding is not None:
if not self.camera_embedding == 'geometric':
raise NotImplementedError("Only geometric camera embedding is implemented")
self.camera = FourierPositionEncoding(n=3, num_bands=camera_embedding_num_bands,max_resolution=camera_embedding_max_resolution)
# import pdb
# pdb.set_trace()
self.camera_embed_dim = self.camera.channels
# Heads - Detection
self.mlp_classif = regression_mlp([self.embed_dim, self.embed_dim, 1]) # bg or human
# Heads - Human properties
self.mlp_offset = regression_mlp([self.embed_dim, self.embed_dim, 2]) # offset
# Dense vetcor idx
self.nrot = 53
self.idx_score, self.idx_offset, self.idx_dist = [0], [1,2], [3]
self.idx_pose = list(range(4,4+self.nrot*9))
self.idx_shape = list(range(4+self.nrot*9,4+self.nrot*9+11))
self.idx_expr = list(range(4+self.nrot*9+11,4+self.nrot*9+11+10))
# SMPL Layers
dict_smpl_layer = {'neutral': {10: SMPL_Layer(type='smplx', gender='neutral', num_betas=10, kid=False, person_center=person_center)}}
_moduleDict = []
for k, _smpl_layer in dict_smpl_layer.items():
_moduleDict.append([k, copy.deepcopy(_smpl_layer[10])])
self.smpl_layer = nn.ModuleDict(_moduleDict)
self.x_attention_head = HPH(
num_body_joints=self.nrot-1, #23,
context_dim=self.embed_dim + self.camera_embed_dim,
dim=1024,
depth=self.xat_depth,
heads=self.xat_num_heads,
mlp_dim=1024,
dim_head=32,
dropout=0.0,
emb_dropout=0.0,
at_token_res=self.img_size // self.patch_size)
def detection(self, z, nms_kernel_size, det_thresh, N):
""" Detection score on the entire low res image """
scores = _sigmoid(self.mlp_classif(z)) # per token detection score.
# Restore Height and Width dimensions.
scores = unpatch(scores, patch_size=1, c=scores.shape[2], img_size=int(np.sqrt(N)))
if nms_kernel_size > 1: # Easy nms: supress adjacent high scores with max pooling.
scores = _nms(scores, kernel=nms_kernel_size)
_scores = torch.permute(scores, (0, 2, 3, 1))
# Binary decision (keep confident detections)
idx = apply_threshold(det_thresh, _scores)
# Scores
scores_detected = scores[idx[0], idx[3], idx[1],idx[2]] # scores of the detected humans only
scores = torch.permute(scores, (0, 2, 3, 1))
return scores, scores_detected, idx
def embedd_camera(self, K, z):
""" Embed viewing directions using fourrier encoding."""
bs = z.shape[0]
_h, _w = list(z.shape[-2:])
points = torch.stack([torch.arange(0,_h,1).reshape(-1,1).repeat(1,_w), torch.arange(0,_w,1).reshape(1,-1).repeat(_h,1)],-1).to(z.device).float() # [h,w,2]
points = points * self.patch_size + self.patch_size // 2 # move to pixel space - we give the pixel center of each token
points = points.reshape(1,-1,2).repeat(bs,1,1) # (bs, N, 2): 2D points
distance = torch.ones(bs,points.shape[1],1).to(K.device) # (bs, N, 1): distance in the 3D world
rays = inverse_perspective_projection(points, K, distance) # (bs, N, 3)
rays_embeddings = self.camera(pos=rays)
# Repeat for each element of the batch
z_K = rays_embeddings.reshape(bs,_h,_w,self.camera_embed_dim) # [bs,h,w,D]
return z_K
def to_euclidean_dist(self, x, dist, _K):
# Focal length normalization
focal = _K[:,[0],[0]]
dist = undo_focal_length_normalization(dist, focal, fovn=self.fovn, img_size=x.shape[-1])
# log space
if self.nearness:
dist = undo_log_depth(dist)
# Clamping
if self.clip_dist:
dist = torch.clamp(dist, 0, 50)
return dist
def forward(self,
x,
idx=None,
det_thresh=0.5,
nms_kernel_size=3,
K=None,
*args,
**kwargs):
"""
Forward pass of the model and compute the loss according to the groundtruth
Args:
- x: RGB image - [bs,3,224,224]
- idx: GT location of persons - tuple of 3 tensor of shape [p]
- idx_j2d: GT location of 2d-kpts for each detected humans - tensor of shape [bs',14,2] - location in pixel space
Return:
- y: [bs,D,16,16]
"""
persons = []
out = {}
# Feature extraction
z = self.backbone(x)
B,N,C = z.size() # [bs,256,768]
# Detection
scores, scores_det, idx = self.detection(z, nms_kernel_size=nms_kernel_size, det_thresh=det_thresh, N=N)
if len(idx[0]) == 0:
# no humans detected in the frame
return persons
# Map of Dense Feature
z = unpatch(z, patch_size=1, c=z.shape[2], img_size=int(np.sqrt(N))) # [bs,D,16,16]
z_all = z
# Extract the 'central' features
z = torch.reshape(z, (z.shape[0], 1, z.shape[1]//1, z.shape[2], z.shape[3])) # [bs,stack_K,D,16,16]
z_central = z[idx[0],idx[3],:,idx[1],idx[2]] # dense vectors
# 2D offset regression
offset = self.mlp_offset(z_central)
# Camera instrincs
K_det = K[idx[0]] # cameras for detected person
z_K = self.embedd_camera(K, z) # Embed viewing directions.
z_central = torch.cat([z_central, z_K[idx[0],idx[1], idx[2]]], 1) # Add to query tokens.
z_all = torch.cat([z_all, z_K.permute(0,3,1,2)], 1) # for the cross-attention only
z = torch.cat([z, z_K.permute(0,3,1,2).unsqueeze(1)],2)
# Distance for estimating the 3D location in 3D space
loc = torch.stack([idx[2],idx[1]]).permute(1,0) # Moving from higher resolution the location of the pelvis
loc = (loc + 0.5 + offset ) * self.patch_size
# SMPL parameter regression
kv = z_all[idx[0]] # retrieving dense features associated to each central vector
pred_smpl_params, pred_cam = self.x_attention_head(z_central, kv, idx_0=idx[0], idx_det=idx)
# Get outputs from the SMPL layer.
shape = pred_smpl_params['betas']
rotmat = torch.cat([pred_smpl_params['global_orient'],pred_smpl_params['body_pose']], 1)
expression = pred_smpl_params['expression']
rotvec = roma.rotmat_to_rotvec(rotmat)
# Distance
dist = pred_cam[:, 0][:, None]
out['dist_postprocessed'] = dist # before applying any post-processing such as focal length normalization, inverse or log
dist = self.to_euclidean_dist(x, dist, K_det)
# Populate output dictionnary
out.update({'scores': scores, 'offset': offset, 'dist': dist, 'expression': expression,
'rotmat': rotmat, 'shape': shape, 'rotvec': rotvec, 'loc': loc})
assert rotvec.shape[0] == shape.shape[0] == loc.shape[0] == dist.shape[0], "Incoherent shapes"
# Neutral
smpl_out = self.smpl_layer['neutral'](rotvec, shape, loc, dist, None, K=K_det, expression=expression)
out.update(smpl_out)
# Populate a dictionnary for each person
for i in range(idx[0].shape[0]):
person = {
# Detection
'scores': scores_det[i], # detection scores
'loc': out['loc'][i], # 2d pixel location of the primary keypoints
# SMPL-X params
'transl': out['transl'][i], # from the primary keypoint i.e. the head
'transl_pelvis': out['transl_pelvis'][i], # of the pelvis joint
'rotvec': out['rotvec'][i],
'expression': out['expression'][i],
'shape': out['shape'][i],
# SMPL-X meshs
'verts_smplx': out['verts_smplx_cam'][i],
'j3d_smplx': out['j3d'][i],
'j2d_smplx': out['j2d'][i],
}
persons.append(person)
return persons
class HPH(nn.Module):
""" Cross-attention based SMPL Transformer decoder
Code modified from:
https://github.com/shubham-goel/4D-Humans/blob/a0def798c7eac811a63c8220fcc22d983b39785e/hmr2/models/heads/smpl_head.py#L17
https://github.com/shubham-goel/4D-Humans/blob/a0def798c7eac811a63c8220fcc22d983b39785e/hmr2/models/components/pose_transformer.py#L301
"""
def __init__(self,
num_body_joints=52,
context_dim=1280,
dim=1024,
depth=2,
heads=8,
mlp_dim=1024,
dim_head=64,
dropout=0.0,
emb_dropout=0.0,
at_token_res=32,
):
super().__init__()
self.joint_rep_type, self.joint_rep_dim = '6d', 6
self.num_body_joints = num_body_joints
self.nrot = self.num_body_joints + 1
npose = self.joint_rep_dim * (self.num_body_joints + 1)
self.npose = npose
self.depth = depth,
self.heads = heads,
self.res = at_token_res
self.input_is_mean_shape = True
_context_dim = context_dim # for the central features
# Transformer Decoder setup.
# Based on https://github.com/shubham-goel/4D-Humans/blob/8830bb330558eea2395b7f57088ef0aae7f8fa22/hmr2/configs_hydra/experiment/hmr_vit_transformer.yaml#L35
transformer_args = dict(
num_tokens=1,
token_dim=(npose + 10 + 3 + _context_dim) if self.input_is_mean_shape else 1,
dim=dim,
depth=depth,
heads=heads,
mlp_dim=mlp_dim,
dim_head=dim_head,
dropout=dropout,
emb_dropout=emb_dropout,
context_dim=context_dim,
)
self.transformer = TransformerDecoder(**transformer_args)
dim = transformer_args['dim']
# Final decoders to regress targets
self.decpose, self.decshape, self.deccam, self.decexpression = [nn.Linear(dim, od) for od in [npose, 10, 3, 10]]
# Register bufffers for the smpl layer.
self.set_smpl_init()
# Init learned embeddings for the cross attention queries
self.init_learned_queries(context_dim)
def init_learned_queries(self, context_dim, std=0.2):
""" Init learned embeddings for queries"""
self.cross_queries_x = nn.Parameter(torch.zeros(self.res, context_dim))
torch.nn.init.normal_(self.cross_queries_x, std=std)
self.cross_queries_y = nn.Parameter(torch.zeros(self.res, context_dim))
torch.nn.init.normal_(self.cross_queries_y, std=std)
self.cross_values_x = nn.Parameter(torch.zeros(self.res, context_dim))
torch.nn.init.normal_(self.cross_values_x, std=std)
self.cross_values_y = nn.Parameter(nn.Parameter(torch.zeros(self.res, context_dim)))
torch.nn.init.normal_(self.cross_values_y, std=std)
def set_smpl_init(self):
""" Fetch saved SMPL parameters and register buffers."""
mean_params = np.load(MEAN_PARAMS)
if self.nrot == 53:
init_body_pose = torch.eye(3).reshape(1,3,3).repeat(self.nrot,1,1)[:,:,:2].flatten(1).reshape(1, -1)
init_body_pose[:,:24*6] = torch.from_numpy(mean_params['pose'][:]).float() # global_orient+body_pose from SMPL
else:
init_body_pose = torch.from_numpy(mean_params['pose'].astype(np.float32)).unsqueeze(0)
init_betas = torch.from_numpy(mean_params['shape'].astype('float32')).unsqueeze(0)
init_cam = torch.from_numpy(mean_params['cam'].astype(np.float32)).unsqueeze(0)
init_betas_kid = torch.cat([init_betas, torch.zeros_like(init_betas[:,[0]])],1)
init_expression = 0. * torch.from_numpy(mean_params['shape'].astype('float32')).unsqueeze(0)
self.register_buffer('init_body_pose', init_body_pose)
self.register_buffer('init_betas', init_betas)
self.register_buffer('init_betas_kid', init_betas_kid)
self.register_buffer('init_cam', init_cam)
self.register_buffer('init_expression', init_expression)
def cross_attn_inputs(self, x, x_central, idx_0, idx_det):
""" Reshape and pad x_central to have the right shape for Cross-attention processing.
Inject learned embeddings to query and key inputs at the location of detected people. """
h, w = x.shape[2], x.shape[3]
x = einops.rearrange(x, 'b c h w -> b (h w) c')
assert idx_0 is not None, "Learned cross queries only work with multicross"
if idx_0.shape[0] > 0:
# reconstruct the batch/nb_people dimensions: pad for images with fewer people than max.
counts, idx_det_0 = rebatch(idx_0, idx_det)
old_shape = x_central.shape
# Legacy check for old versions
assert idx_det is not None, 'idx_det needed for learned_attention'
# xx is the tensor with all features
xx = einops.rearrange(x, 'b (h w) c -> b c h w', h=h, w=w)
# Get learned embeddings for queries, at positions with detected people.
queries_xy = self.cross_queries_x[idx_det[1]] + self.cross_queries_y[idx_det[2]]
# Add the embedding to the central features.
x_central = x_central + queries_xy
assert x_central.shape == old_shape, "Problem with shape"
# Make it a tensor of dim. [batch, max_ppl_along_batch, ...]
x_central, mask = pad_to_max(x_central, counts)
#xx = einops.rearrange(x, 'b (h w) c -> b c h w', h=h, w=w)
xx = xx[torch.cumsum(counts, dim=0)-1]
# Inject leared embeddings for key/values at detected locations.
values_xy = self.cross_values_x[idx_det[1]] + self.cross_values_y[idx_det[2]]
xx[idx_det_0, :, idx_det[1], idx_det[2]] += values_xy
x = einops.rearrange(xx, 'b c h w -> b (h w) c')
num_ppl = x_central.shape[1]
else:
mask = None
num_ppl = 1
counts = None
return x, x_central, mask, num_ppl, counts
def forward(self,
x_central,
x,
idx_0=None,
idx_det=None,
**kwargs):
""""
Forward the HPH module.
"""
batch_size = x.shape[0]
# Reshape inputs for cross attention and inject learned embeddings for queries and values.
x, x_central, mask, num_ppl, counts = self.cross_attn_inputs(x, x_central, idx_0, idx_det)
# Add init (mean smpl params) to the query for each quantity being regressed.
bs = x_central.shape[0] if idx_0.shape[0] else batch_size
expand = lambda x: x.expand(bs, num_ppl , -1)
pred_body_pose, pred_betas, pred_cam, pred_expression = [expand(x) for x in
[self.init_body_pose, self.init_betas, self.init_cam, self.init_expression]]
token = torch.cat([x_central, pred_body_pose, pred_betas, pred_cam], dim=-1)
if len(token.shape) == 2:
token = token[:,None,:]
# Process query and inputs with the cross-attention module.
token_out = self.transformer(token, context=x, mask=mask)
# Reshape outputs from [batch_size, nmax_ppl, ...] to [total_ppl, ...]
if mask is not None:
# Stack along batch axis.
token_out_list = [token_out[i, :c, ...] for i, c in enumerate(counts)]
token_out = torch.concat(token_out_list, dim=0)
else:
token_out = token_out.squeeze(1) # (B, C)
# Decoded output token and add to init for each quantity to regress.
reshape = (lambda x: x) if idx_0.shape[0] == 0 else (lambda x: x[0, 0, ...][None, ...])
decoders = [self.decpose, self.decshape, self.deccam, self.decexpression]
inits = [pred_body_pose, pred_betas, pred_cam, pred_expression]
pred_body_pose, pred_betas, pred_cam, pred_expression = [d(token_out) + reshape(i) for d, i in zip(decoders, inits)]
# Convert self.joint_rep_type -> rotmat
joint_conversion_fn = rot6d_to_rotmat
# conversion
pred_body_pose = joint_conversion_fn(pred_body_pose).view(batch_size, self.num_body_joints+1, 3, 3)
# Build the output dict
pred_smpl_params = {'global_orient': pred_body_pose[:, [0]],
'body_pose': pred_body_pose[:, 1:],
'betas': pred_betas,
#'betas_kid': pred_betas_kid,
'expression': pred_expression}
return pred_smpl_params, pred_cam #, pred_smpl_params_list
def regression_mlp(layers_sizes):
"""
Return a fully connected network.
"""
assert len(layers_sizes) >= 2
in_features = layers_sizes[0]
layers = []
for i in range(1, len(layers_sizes)-1):
out_features = layers_sizes[i]
layers.append(torch.nn.Linear(in_features, out_features))
layers.append(torch.nn.ReLU())
in_features = out_features
layers.append(torch.nn.Linear(in_features, layers_sizes[-1]))
return torch.nn.Sequential(*layers)
def apply_threshold(det_thresh, _scores):
""" Apply thresholding to detection scores; if stack_K is used and det_thresh is a list, apply to each channel separately """
if isinstance(det_thresh, list):
det_thresh = det_thresh[0]
idx = torch.where(_scores >= det_thresh)
return idx
def _nms(heat, kernel=3):
""" easy non maximal supression (as in CenterNet) """
if kernel not in [2, 4]:
pad = (kernel - 1) // 2
else:
if kernel == 2:
pad = 1
else:
pad = 2
hmax = nn.functional.max_pool2d( heat, (kernel, kernel), stride=1, padding=pad)
if hmax.shape[2] > heat.shape[2]:
hmax = hmax[:, :, :heat.shape[2], :heat.shape[3]]
keep = (hmax == heat).float()
return heat * keep
def _sigmoid(x):
y = torch.clamp(x.sigmoid_(), min=1e-4, max=1-1e-4)
return y
if __name__ == "__main__":
Model()