nakas's picture
github fork
2c448c3
raw
history blame
6.36 kB
"""NIPS2017 "Time Domain Neural Audio Style Transfer" code repository
Parag K. Mital
"""
import glob
import numpy as np
from scipy.signal import hann
import librosa
import matplotlib
import matplotlib.pyplot as plt
import os
def limiter(signal,
delay=40,
threshold=0.9,
release_coeff=0.9995,
attack_coeff=0.9):
delay_index = 0
envelope = 0
gain = 1
delay = delay
delay_line = np.zeros(delay)
release_coeff = release_coeff
attack_coeff = attack_coeff
threshold = threshold
for idx, sample in enumerate(signal):
delay_line[delay_index] = sample
delay_index = (delay_index + 1) % delay
# calculate an envelope of the signal
envelope = max(np.abs(sample), envelope * release_coeff)
if envelope > threshold:
target_gain = threshold / envelope
else:
target_gain = 1.0
# have gain go towards a desired limiter gain
gain = (gain * attack_coeff + target_gain * (1 - attack_coeff))
# limit the delayed signal
signal[idx] = delay_line[delay_index] * gain
return signal
def chop(signal, hop_size=256, frame_size=512):
n_hops = len(signal) // hop_size
frames = []
hann_win = hann(frame_size)
for hop_i in range(n_hops):
frame = signal[(hop_i * hop_size):(hop_i * hop_size + frame_size)]
frame = np.pad(frame, (0, frame_size - len(frame)), 'constant')
frame *= hann_win
frames.append(frame)
frames = np.array(frames)
return frames
def unchop(frames, hop_size=256, frame_size=512):
signal = np.zeros((frames.shape[0] * hop_size + frame_size,))
for hop_i, frame in enumerate(frames):
signal[(hop_i * hop_size):(hop_i * hop_size + frame_size)] += frame
return signal
def matrix_dft(V):
N = len(V)
w = np.exp(-2j * np.pi / N)
col = np.vander([w], N, True)
W = np.vander(col.flatten(), N, True) / np.sqrt(N)
return np.dot(W, V)
def dft_np(signal, hop_size=256, fft_size=512):
s = chop(signal, hop_size, fft_size)
N = s.shape[-1]
k = np.reshape(
np.linspace(0.0, 2 * np.pi / N * (N // 2), N // 2), [1, N // 2])
x = np.reshape(np.linspace(0.0, N - 1, N), [N, 1])
freqs = np.dot(x, k)
real = np.dot(s, np.cos(freqs)) * (2.0 / N)
imag = np.dot(s, np.sin(freqs)) * (2.0 / N)
return real, imag
def idft_np(re, im, hop_size=256, fft_size=512):
N = re.shape[1] * 2
k = np.reshape(
np.linspace(0.0, 2 * np.pi / N * (N // 2), N // 2), [N // 2, 1])
x = np.reshape(np.linspace(0.0, N - 1, N), [1, N])
freqs = np.dot(k, x)
signal = np.zeros((re.shape[0] * hop_size + fft_size,))
recon = np.dot(re, np.cos(freqs)) + np.dot(im, np.sin(freqs))
for hop_i, frame in enumerate(recon):
signal[(hop_i * hop_size):(hop_i * hop_size + fft_size)] += frame
return signal
def rainbowgram(path,
ax,
peak=70.0,
use_cqt=False,
n_fft=1024,
hop_length=256,
sr=22050,
over_sample=4,
res_factor=0.8,
octaves=5,
notes_per_octave=10):
audio = librosa.load(path, sr=sr)[0]
if use_cqt:
C = librosa.cqt(audio,
sr=sr,
hop_length=hop_length,
bins_per_octave=int(notes_per_octave * over_sample),
n_bins=int(octaves * notes_per_octave * over_sample),
filter_scale=res_factor,
fmin=librosa.note_to_hz('C2'))
else:
C = librosa.stft(
audio,
n_fft=n_fft,
win_length=n_fft,
hop_length=hop_length,
center=True)
mag, phase = librosa.core.magphase(C)
phase_angle = np.angle(phase)
phase_unwrapped = np.unwrap(phase_angle)
dphase = phase_unwrapped[:, 1:] - phase_unwrapped[:, :-1]
dphase = np.concatenate([phase_unwrapped[:, 0:1], dphase], axis=1) / np.pi
mag = (librosa.logamplitude(
mag**2, amin=1e-13, top_db=peak, ref_power=np.max) / peak) + 1
cdict = {
'red': ((0.0, 0.0, 0.0), (1.0, 0.0, 0.0)),
'green': ((0.0, 0.0, 0.0), (1.0, 0.0, 0.0)),
'blue': ((0.0, 0.0, 0.0), (1.0, 0.0, 0.0)),
'alpha': ((0.0, 1.0, 1.0), (1.0, 0.0, 0.0))
}
my_mask = matplotlib.colors.LinearSegmentedColormap('MyMask', cdict)
plt.register_cmap(cmap=my_mask)
ax.matshow(dphase[::-1, :], cmap=plt.cm.rainbow)
ax.matshow(mag[::-1, :], cmap=my_mask)
def rainbowgrams(list_of_paths,
saveto=None,
rows=2,
cols=4,
col_labels=[],
row_labels=[],
use_cqt=True,
figsize=(15, 20),
peak=70.0):
"""Build a CQT rowsXcols.
"""
N = len(list_of_paths)
assert N == rows * cols
fig, axes = plt.subplots(
rows, cols, sharex=True, sharey=True, figsize=figsize)
fig.subplots_adjust(left=0.05, right=0.95, wspace=0.05, hspace=0.1)
# fig = plt.figure(figsize=(18, N * 1.25))
for i, path in enumerate(list_of_paths):
row = int(i / cols)
col = i % cols
if rows == 1 and cols == 1:
ax = axes
elif rows == 1:
ax = axes[col]
elif cols == 1:
ax = axes[row]
else:
ax = axes[row, col]
rainbowgram(path, ax, peak, use_cqt)
ax.set_axis_bgcolor('white')
ax.set_xticks([])
ax.set_yticks([])
if col == 0 and row_labels:
ax.set_ylabel(row_labels[row])
if row == rows - 1 and col_labels:
ax.set_xlabel(col_labels[col])
if saveto is not None:
fig.savefig(filename='{}.png'.format(saveto))
def plot_rainbowgrams():
for root in ['target', 'corpus', 'results']:
files = glob.glob('{}/**/*.wav'.format(root), recursive=True)
for f in files:
fname = '{}.png'.format(f)
if not os.path.exists(fname):
rainbowgrams(
[f],
saveto=fname,
figsize=(20, 5),
rows=1,
cols=1)
plt.close('all')