saiga-cuda-chat / app.py
muryshev's picture
Update app.py
32fc9c0
raw
history blame
7.93 kB
from flask import Flask, request, Response
import logging
from llama_cpp import Llama
import threading
from huggingface_hub import snapshot_download
SYSTEM_PROMPT = "Ты — русскоязычный автоматический ассистент. Ты максимально точно и отвечаешь на запросы пользователя, используя русский язык."
SYSTEM_TOKEN = 1788
USER_TOKEN = 1404
BOT_TOKEN = 9225
LINEBREAK_TOKEN = 13
ROLE_TOKENS = {
"user": USER_TOKEN,
"bot": BOT_TOKEN,
"system": SYSTEM_TOKEN
}
# Create a lock object
lock = threading.Lock()
app = Flask(__name__)
# Configure Flask logging
app.logger.setLevel(logging.DEBUG) # Set the desired logging level
# Initialize the model when the application starts
#model_path = "../models/model-q4_K.gguf" # Replace with the actual model path
#model_name = "model/ggml-model-q4_K.gguf"
#repo_name = "IlyaGusev/saiga2_13b_gguf"
#model_name = "model-q4_K.gguf"
repo_name = "IlyaGusev/saiga2_70b_gguf"
model_name = "ggml-model-q4_1.gguf"
#snapshot_download(repo_id=repo_name, local_dir=".", allow_patterns=model_name)
def get_message_tokens(model, role, content):
message_tokens = model.tokenize(content.encode("utf-8"))
message_tokens.insert(1, ROLE_TOKENS[role])
message_tokens.insert(2, LINEBREAK_TOKEN)
message_tokens.append(model.token_eos())
return message_tokens
def get_system_tokens(model):
system_message = {
"role": "system",
"content": SYSTEM_PROMPT
}
return get_message_tokens(model, **system_message)
def get_system_tokens_for_preprompt(model, preprompt):
system_message = {
"role": "system",
"content": preprompt
}
return get_message_tokens(model, **system_message)
app.logger.info('Evaluating system tokens start')
#system_tokens = get_system_tokens(model)
#model.eval(system_tokens)
app.logger.info('Evaluating system tokens end')
stop_generation = False
def generate_tokens(model, generator):
global stop_generation
app.logger.info('generate_tokens started')
#with lock:
for token in generator:
if token == model.token_eos() or stop_generation:
stop_generation = False
app.logger.info('Abort generating')
yield b'' # End of chunk
break
token_str = model.detokenize([token])#.decode("utf-8", errors="ignore")
yield token_str
@app.route('/stop_generation', methods=['GET'])
def handler_stop_generation():
global stop_generation
stop_generation = True
return Response('Stopped', content_type='text/plain')
@app.route('/', methods=['GET', 'PUT', 'DELETE', 'PATCH'])
def generate_unknown_response():
app.logger.info('unknown method: '+request.method)
try:
request_payload = request.get_json()
app.logger.info('payload: '+request.get_json())
except Exception as e:
app.logger.info('payload empty')
return Response('What do you want?', content_type='text/plain')
@app.route('/search_request', methods=['POST'])
def generate_search_request():
global stop_generation
stop_generation = False
data = request.get_json()
app.logger.info(data)
user_query = data.get("query", "")
preprompt = data.get("preprompt", "Ты — русскоязычный автоматический ассистент для написании запросов для поисковых систем на русском языке. Отвечай на сообщения пользователя только текстом поискового запроса, релевантным запросу пользователя. Если запрос пользователя уже хорош, используй его в качестве результата.")
parameters = data.get("parameters", {})
# Extract parameters from the request
temperature = 0.01
truncate = parameters.get("truncate", 1000)
max_new_tokens = parameters.get("max_new_tokens", 1024)
top_p = 0.8
repetition_penalty = parameters.get("repetition_penalty", 1.2)
top_k = 20
return_full_text = parameters.get("return_full_text", False)
model = Llama(
model_path=model_name,
n_ctx=2000,
n_parts=1,
#n_batch=100,
logits_all=True,
#n_threads=12,
verbose=True,
n_gqa=8 #must be set for 70b models
)
tokens = get_system_tokens_for_preprompt(model, preprompt)
tokens.append(LINEBREAK_TOKEN)
tokens = get_message_tokens(model=model, role="user", content=user_query[:200]) + [model.token_bos(), BOT_TOKEN, LINEBREAK_TOKEN]
generator = model.generate(
tokens,
top_k=top_k,
top_p=top_p,
temp=temperature,
repeat_penalty=repetition_penalty
)
# Use Response to stream tokens
return Response(generate_tokens(model, generator), content_type='text/plain', status=200, direct_passthrough=True)
@app.route('/', methods=['POST'])
def generate_response():
global stop_generation
stop_generation = False
data = request.get_json()
app.logger.info(data)
messages = data.get("messages", [])
preprompt = data.get("preprompt", "")
parameters = data.get("parameters", {})
# Extract parameters from the request
temperature = 0.02#parameters.get("temperature", 0.01)
truncate = parameters.get("truncate", 1000)
max_new_tokens = parameters.get("max_new_tokens", 1024)
top_p = 80#parameters.get("top_p", 0.85)
repetition_penalty = parameters.get("repetition_penalty", 1.2)
top_k = 25#parameters.get("top_k", 30)
return_full_text = parameters.get("return_full_text", False)
model = Llama(
model_path=model_name,
n_ctx=2000,
n_parts=1,
#n_batch=100,
logits_all=True,
#n_threads=12,
verbose=True,
n_gqa=8 #must be set for 70b models
)
# Generate the response
#system_tokens = get_system_tokens(model)
#tokens = system_tokens
#if preprompt != "":
# tokens = get_system_tokens_for_preprompt(model, preprompt)
#else:
tokens = get_system_tokens(model)
tokens.append(LINEBREAK_TOKEN)
#model.eval(tokens)
tokens = []
for message in messages:#[:-1]:
if message.get("from") == "assistant":
message_tokens = get_message_tokens(model=model, role="bot", content=message.get("content", ""))
else:
message_tokens = get_message_tokens(model=model, role="user", content=message.get("content", ""))
tokens.extend(message_tokens)
#LINEBREAK_TOKEN)
#app.logger.info('model.eval start')
#model.eval(tokens)
#app.logger.info('model.eval end')
#last_message = messages[-1]
#if last_message.get("from") == "assistant":
# last_message_tokens = get_message_tokens(model=model, role="bot", content=last_message.get("content", ""))
#else:
# last_message_tokens = get_message_tokens(model=model, role="user", content=last_message.get("content", ""))
tokens.extend([model.token_bos(), BOT_TOKEN, LINEBREAK_TOKEN])
app.logger.info('Prompt:')
app.logger.info(model.detokenize(tokens).decode("utf-8", errors="ignore"))
app.logger.info('Generate started')
generator = model.generate(
tokens,
top_k=top_k,
top_p=top_p,
temp=temperature,
repeat_penalty=repetition_penalty
)
app.logger.info('Generator created')
# Use Response to stream tokens
return Response(generate_tokens(model, generator), content_type='text/plain', status=200, direct_passthrough=True)
if __name__ == "__main__":
app.run(host="0.0.0.0", port=7860, debug=False, threaded=False)