Spaces:
Running
on
Zero
Running
on
Zero
| # Code based on https://github.com/WikiChao/FreSca (MIT License) | |
| import torch | |
| import torch.fft as fft | |
| def Fourier_filter(x, scale_low=1.0, scale_high=1.5, freq_cutoff=20): | |
| """ | |
| Apply frequency-dependent scaling to an image tensor using Fourier transforms. | |
| Parameters: | |
| x: Input tensor of shape (B, C, H, W) | |
| scale_low: Scaling factor for low-frequency components (default: 1.0) | |
| scale_high: Scaling factor for high-frequency components (default: 1.5) | |
| freq_cutoff: Number of frequency indices around center to consider as low-frequency (default: 20) | |
| Returns: | |
| x_filtered: Filtered version of x in spatial domain with frequency-specific scaling applied. | |
| """ | |
| # Preserve input dtype and device | |
| dtype, device = x.dtype, x.device | |
| # Convert to float32 for FFT computations | |
| x = x.to(torch.float32) | |
| # 1) Apply FFT and shift low frequencies to center | |
| x_freq = fft.fftn(x, dim=(-2, -1)) | |
| x_freq = fft.fftshift(x_freq, dim=(-2, -1)) | |
| # Initialize mask with high-frequency scaling factor | |
| mask = torch.ones(x_freq.shape, device=device) * scale_high | |
| m = mask | |
| for d in range(len(x_freq.shape) - 2): | |
| dim = d + 2 | |
| cc = x_freq.shape[dim] // 2 | |
| f_c = min(freq_cutoff, cc) | |
| m = m.narrow(dim, cc - f_c, f_c * 2) | |
| # Apply low-frequency scaling factor to center region | |
| m[:] = scale_low | |
| # 3) Apply frequency-specific scaling | |
| x_freq = x_freq * mask | |
| # 4) Convert back to spatial domain | |
| x_freq = fft.ifftshift(x_freq, dim=(-2, -1)) | |
| x_filtered = fft.ifftn(x_freq, dim=(-2, -1)).real | |
| # 5) Restore original dtype | |
| x_filtered = x_filtered.to(dtype) | |
| return x_filtered | |
| class FreSca: | |
| def INPUT_TYPES(s): | |
| return { | |
| "required": { | |
| "model": ("MODEL",), | |
| "scale_low": ("FLOAT", {"default": 1.0, "min": 0, "max": 10, "step": 0.01, | |
| "tooltip": "Scaling factor for low-frequency components"}), | |
| "scale_high": ("FLOAT", {"default": 1.25, "min": 0, "max": 10, "step": 0.01, | |
| "tooltip": "Scaling factor for high-frequency components"}), | |
| "freq_cutoff": ("INT", {"default": 20, "min": 1, "max": 10000, "step": 1, | |
| "tooltip": "Number of frequency indices around center to consider as low-frequency"}), | |
| } | |
| } | |
| RETURN_TYPES = ("MODEL",) | |
| FUNCTION = "patch" | |
| CATEGORY = "_for_testing" | |
| DESCRIPTION = "Applies frequency-dependent scaling to the guidance" | |
| def patch(self, model, scale_low, scale_high, freq_cutoff): | |
| def custom_cfg_function(args): | |
| conds_out = args["conds_out"] | |
| if len(conds_out) <= 1 or None in args["conds"][:2]: | |
| return conds_out | |
| cond = conds_out[0] | |
| uncond = conds_out[1] | |
| guidance = cond - uncond | |
| filtered_guidance = Fourier_filter( | |
| guidance, | |
| scale_low=scale_low, | |
| scale_high=scale_high, | |
| freq_cutoff=freq_cutoff, | |
| ) | |
| filtered_cond = filtered_guidance + uncond | |
| return [filtered_cond, uncond] + conds_out[2:] | |
| m = model.clone() | |
| m.set_model_sampler_pre_cfg_function(custom_cfg_function) | |
| return (m,) | |
| NODE_CLASS_MAPPINGS = { | |
| "FreSca": FreSca, | |
| } | |
| NODE_DISPLAY_NAME_MAPPINGS = { | |
| "FreSca": "FreSca", | |
| } | |