multimodalart's picture
Upload 83 files
708238a verified
raw
history blame
13.5 kB
# (c) City96 || Apache-2.0 (apache.org/licenses/LICENSE-2.0)
import os
import gguf
import torch
import logging
import argparse
from tqdm import tqdm
from safetensors.torch import load_file, save_file
QUANTIZATION_THRESHOLD = 1024
REARRANGE_THRESHOLD = 512
MAX_TENSOR_NAME_LENGTH = 127
MAX_TENSOR_DIMS = 4
class ModelTemplate:
arch = "invalid" # string describing architecture
shape_fix = False # whether to reshape tensors
keys_detect = [] # list of lists to match in state dict
keys_banned = [] # list of keys that should mark model as invalid for conversion
keys_hiprec = [] # list of keys that need to be kept in fp32 for some reason
keys_ignore = [] # list of strings to ignore keys by when found
def handle_nd_tensor(self, key, data):
raise NotImplementedError(f"Tensor detected that exceeds dims supported by C++ code! ({key} @ {data.shape})")
class ModelFlux(ModelTemplate):
arch = "flux"
keys_detect = [
("transformer_blocks.0.attn.norm_added_k.weight",),
("double_blocks.0.img_attn.proj.weight",),
]
keys_banned = ["transformer_blocks.0.attn.norm_added_k.weight",]
class ModelSD3(ModelTemplate):
arch = "sd3"
keys_detect = [
("transformer_blocks.0.attn.add_q_proj.weight",),
("joint_blocks.0.x_block.attn.qkv.weight",),
]
keys_banned = ["transformer_blocks.0.attn.add_q_proj.weight",]
class ModelAura(ModelTemplate):
arch = "aura"
keys_detect = [
("double_layers.3.modX.1.weight",),
("joint_transformer_blocks.3.ff_context.out_projection.weight",),
]
keys_banned = ["joint_transformer_blocks.3.ff_context.out_projection.weight",]
class ModelHiDream(ModelTemplate):
arch = "hidream"
keys_detect = [
(
"caption_projection.0.linear.weight",
"double_stream_blocks.0.block.ff_i.shared_experts.w3.weight"
)
]
keys_hiprec = [
# nn.parameter, can't load from BF16 ver
".ff_i.gate.weight",
"img_emb.emb_pos"
]
class CosmosPredict2(ModelTemplate):
arch = "cosmos"
keys_detect = [
(
"blocks.0.mlp.layer1.weight",
"blocks.0.adaln_modulation_cross_attn.1.weight",
)
]
keys_hiprec = ["pos_embedder"]
keys_ignore = ["_extra_state", "accum_"]
class ModelHyVid(ModelTemplate):
arch = "hyvid"
keys_detect = [
(
"double_blocks.0.img_attn_proj.weight",
"txt_in.individual_token_refiner.blocks.1.self_attn_qkv.weight",
)
]
def handle_nd_tensor(self, key, data):
# hacky but don't have any better ideas
path = f"./fix_5d_tensors_{self.arch}.safetensors" # TODO: somehow get a path here??
if os.path.isfile(path):
raise RuntimeError(f"5D tensor fix file already exists! {path}")
fsd = {key: torch.from_numpy(data)}
tqdm.write(f"5D key found in state dict! Manual fix required! - {key} {data.shape}")
save_file(fsd, path)
class ModelWan(ModelHyVid):
arch = "wan"
keys_detect = [
(
"blocks.0.self_attn.norm_q.weight",
"text_embedding.2.weight",
"head.modulation",
)
]
keys_hiprec = [
".modulation" # nn.parameter, can't load from BF16 ver
]
class ModelLTXV(ModelTemplate):
arch = "ltxv"
keys_detect = [
(
"adaln_single.emb.timestep_embedder.linear_2.weight",
"transformer_blocks.27.scale_shift_table",
"caption_projection.linear_2.weight",
)
]
keys_hiprec = [
"scale_shift_table" # nn.parameter, can't load from BF16 base quant
]
class ModelSDXL(ModelTemplate):
arch = "sdxl"
shape_fix = True
keys_detect = [
("down_blocks.0.downsamplers.0.conv.weight", "add_embedding.linear_1.weight",),
(
"input_blocks.3.0.op.weight", "input_blocks.6.0.op.weight",
"output_blocks.2.2.conv.weight", "output_blocks.5.2.conv.weight",
), # Non-diffusers
("label_emb.0.0.weight",),
]
class ModelSD1(ModelTemplate):
arch = "sd1"
shape_fix = True
keys_detect = [
("down_blocks.0.downsamplers.0.conv.weight",),
(
"input_blocks.3.0.op.weight", "input_blocks.6.0.op.weight", "input_blocks.9.0.op.weight",
"output_blocks.2.1.conv.weight", "output_blocks.5.2.conv.weight", "output_blocks.8.2.conv.weight"
), # Non-diffusers
]
class ModelLumina2(ModelTemplate):
arch = "lumina2"
keys_detect = [
("cap_embedder.1.weight", "context_refiner.0.attention.qkv.weight")
]
arch_list = [ModelFlux, ModelSD3, ModelAura, ModelHiDream, CosmosPredict2,
ModelLTXV, ModelHyVid, ModelWan, ModelSDXL, ModelSD1, ModelLumina2]
def is_model_arch(model, state_dict):
# check if model is correct
matched = False
invalid = False
for match_list in model.keys_detect:
if all(key in state_dict for key in match_list):
matched = True
invalid = any(key in state_dict for key in model.keys_banned)
break
assert not invalid, "Model architecture not allowed for conversion! (i.e. reference VS diffusers format)"
return matched
def detect_arch(state_dict):
model_arch = None
for arch in arch_list:
if is_model_arch(arch, state_dict):
model_arch = arch()
break
assert model_arch is not None, "Unknown model architecture!"
return model_arch
def parse_args():
parser = argparse.ArgumentParser(description="Generate F16 GGUF files from single UNET")
parser.add_argument("--src", required=True, help="Source model ckpt file.")
parser.add_argument("--dst", help="Output unet gguf file.")
args = parser.parse_args()
if not os.path.isfile(args.src):
parser.error("No input provided!")
return args
def strip_prefix(state_dict):
# prefix for mixed state dict
prefix = None
for pfx in ["model.diffusion_model.", "model."]:
if any([x.startswith(pfx) for x in state_dict.keys()]):
prefix = pfx
break
# prefix for uniform state dict
if prefix is None:
for pfx in ["net."]:
if all([x.startswith(pfx) for x in state_dict.keys()]):
prefix = pfx
break
# strip prefix if found
if prefix is not None:
logging.info(f"State dict prefix found: '{prefix}'")
sd = {}
for k, v in state_dict.items():
if prefix not in k:
continue
k = k.replace(prefix, "")
sd[k] = v
else:
logging.debug("State dict has no prefix")
sd = state_dict
return sd
def load_state_dict(path):
if any(path.endswith(x) for x in [".ckpt", ".pt", ".bin", ".pth"]):
state_dict = torch.load(path, map_location="cpu", weights_only=True)
for subkey in ["model", "module"]:
if subkey in state_dict:
state_dict = state_dict[subkey]
break
if len(state_dict) < 20:
raise RuntimeError(f"pt subkey load failed: {state_dict.keys()}")
else:
state_dict = load_file(path)
return strip_prefix(state_dict)
def handle_tensors(writer, state_dict, model_arch):
name_lengths = tuple(sorted(
((key, len(key)) for key in state_dict.keys()),
key=lambda item: item[1],
reverse=True,
))
if not name_lengths:
return
max_name_len = name_lengths[0][1]
if max_name_len > MAX_TENSOR_NAME_LENGTH:
bad_list = ", ".join(f"{key!r} ({namelen})" for key, namelen in name_lengths if namelen > MAX_TENSOR_NAME_LENGTH)
raise ValueError(f"Can only handle tensor names up to {MAX_TENSOR_NAME_LENGTH} characters. Tensors exceeding the limit: {bad_list}")
for key, data in tqdm(state_dict.items()):
old_dtype = data.dtype
if any(x in key for x in model_arch.keys_ignore):
tqdm.write(f"Filtering ignored key: '{key}'")
continue
if data.dtype == torch.bfloat16:
data = data.to(torch.float32).numpy()
# this is so we don't break torch 2.0.X
elif data.dtype in [getattr(torch, "float8_e4m3fn", "_invalid"), getattr(torch, "float8_e5m2", "_invalid")]:
data = data.to(torch.float16).numpy()
else:
data = data.numpy()
n_dims = len(data.shape)
data_shape = data.shape
if old_dtype == torch.bfloat16:
data_qtype = gguf.GGMLQuantizationType.BF16
# elif old_dtype == torch.float32:
# data_qtype = gguf.GGMLQuantizationType.F32
else:
data_qtype = gguf.GGMLQuantizationType.F16
# The max no. of dimensions that can be handled by the quantization code is 4
if len(data.shape) > MAX_TENSOR_DIMS:
model_arch.handle_nd_tensor(key, data)
continue # needs to be added back later
# get number of parameters (AKA elements) in this tensor
n_params = 1
for dim_size in data_shape:
n_params *= dim_size
if old_dtype in (torch.float32, torch.bfloat16):
if n_dims == 1:
# one-dimensional tensors should be kept in F32
# also speeds up inference due to not dequantizing
data_qtype = gguf.GGMLQuantizationType.F32
elif n_params <= QUANTIZATION_THRESHOLD:
# very small tensors
data_qtype = gguf.GGMLQuantizationType.F32
elif any(x in key for x in model_arch.keys_hiprec):
# tensors that require max precision
data_qtype = gguf.GGMLQuantizationType.F32
if (model_arch.shape_fix # NEVER reshape for models such as flux
and n_dims > 1 # Skip one-dimensional tensors
and n_params >= REARRANGE_THRESHOLD # Only rearrange tensors meeting the size requirement
and (n_params / 256).is_integer() # Rearranging only makes sense if total elements is divisible by 256
and not (data.shape[-1] / 256).is_integer() # Only need to rearrange if the last dimension is not divisible by 256
):
orig_shape = data.shape
data = data.reshape(n_params // 256, 256)
writer.add_array(f"comfy.gguf.orig_shape.{key}", tuple(int(dim) for dim in orig_shape))
try:
data = gguf.quants.quantize(data, data_qtype)
except (AttributeError, gguf.QuantError) as e:
tqdm.write(f"falling back to F16: {e}")
data_qtype = gguf.GGMLQuantizationType.F16
data = gguf.quants.quantize(data, data_qtype)
new_name = key # do we need to rename?
shape_str = f"{{{', '.join(str(n) for n in reversed(data.shape))}}}"
tqdm.write(f"{f'%-{max_name_len + 4}s' % f'{new_name}'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")
writer.add_tensor(new_name, data, raw_dtype=data_qtype)
def convert_file(path, dst_path=None, interact=True, overwrite=False):
# load & run model detection logic
state_dict = load_state_dict(path)
model_arch = detect_arch(state_dict)
logging.info(f"* Architecture detected from input: {model_arch.arch}")
# detect & set dtype for output file
dtypes = [x.dtype for x in state_dict.values()]
dtypes = {x:dtypes.count(x) for x in set(dtypes)}
main_dtype = max(dtypes, key=dtypes.get)
if main_dtype == torch.bfloat16:
ftype_name = "BF16"
ftype_gguf = gguf.LlamaFileType.MOSTLY_BF16
# elif main_dtype == torch.float32:
# ftype_name = "F32"
# ftype_gguf = None
else:
ftype_name = "F16"
ftype_gguf = gguf.LlamaFileType.MOSTLY_F16
if dst_path is None:
dst_path = f"{os.path.splitext(path)[0]}-{ftype_name}.gguf"
elif "{ftype}" in dst_path: # lcpp logic
dst_path = dst_path.replace("{ftype}", ftype_name)
if os.path.isfile(dst_path) and not overwrite:
if interact:
input("Output exists enter to continue or ctrl+c to abort!")
else:
raise OSError("Output exists and overwriting is disabled!")
# handle actual file
writer = gguf.GGUFWriter(path=None, arch=model_arch.arch)
writer.add_quantization_version(gguf.GGML_QUANT_VERSION)
if ftype_gguf is not None:
writer.add_file_type(ftype_gguf)
handle_tensors(writer, state_dict, model_arch)
writer.write_header_to_file(path=dst_path)
writer.write_kv_data_to_file()
writer.write_tensors_to_file(progress=True)
writer.close()
fix = f"./fix_5d_tensors_{model_arch.arch}.safetensors"
if os.path.isfile(fix):
logging.warning(f"\n### Warning! Fix file found at '{fix}'")
logging.warning(" you most likely need to run 'fix_5d_tensors.py' after quantization.")
return dst_path, model_arch
if __name__ == "__main__":
args = parse_args()
convert_file(args.src, args.dst)