Spaces:
Running
on
Zero
Running
on
Zero
from abc import abstractmethod | |
from typing import Any, Tuple | |
import torch | |
import torch.nn.functional as F | |
from torch import nn | |
class AbstractRegularizer(nn.Module): | |
def __init__(self): | |
super().__init__() | |
def forward(self, z: torch.Tensor) -> Tuple[torch.Tensor, dict]: | |
raise NotImplementedError() | |
def get_trainable_parameters(self) -> Any: | |
raise NotImplementedError() | |
class IdentityRegularizer(AbstractRegularizer): | |
def forward(self, z: torch.Tensor) -> Tuple[torch.Tensor, dict]: | |
return z, dict() | |
def get_trainable_parameters(self) -> Any: | |
yield from () | |
def measure_perplexity( | |
predicted_indices: torch.Tensor, num_centroids: int | |
) -> Tuple[torch.Tensor, torch.Tensor]: | |
# src: https://github.com/karpathy/deep-vector-quantization/blob/main/model.py | |
# eval cluster perplexity. when perplexity == num_embeddings then all clusters are used exactly equally | |
encodings = ( | |
F.one_hot(predicted_indices, num_centroids).float().reshape(-1, num_centroids) | |
) | |
avg_probs = encodings.mean(0) | |
perplexity = (-(avg_probs * torch.log(avg_probs + 1e-10)).sum()).exp() | |
cluster_use = torch.sum(avg_probs > 0) | |
return perplexity, cluster_use | |