Fabrice-TIERCELIN commited on
Commit
93f6ce9
·
verified ·
1 Parent(s): 7fae3b4

Delete inpainting.py

Browse files
Files changed (1) hide show
  1. inpainting.py +0 -194
inpainting.py DELETED
@@ -1,194 +0,0 @@
1
- import inspect
2
- from typing import List, Optional, Union
3
-
4
- import numpy as np
5
- import torch
6
-
7
- import PIL
8
- from diffusers import AutoencoderKL, DDIMScheduler, DiffusionPipeline, PNDMScheduler, UNet2DConditionModel
9
- from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker
10
- from tqdm.auto import tqdm
11
- from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
12
-
13
-
14
- def preprocess_image(image):
15
- w, h = image.size
16
- w, h = map(lambda x: x - x % 32, (w, h)) # resize to integer multiple of 32
17
- image = image.resize((w, h), resample=PIL.Image.LANCZOS)
18
- image = np.array(image).astype(np.float32) / 255.0
19
- image = image[None].transpose(0, 3, 1, 2)
20
- image = torch.from_numpy(image)
21
- return 2.0 * image - 1.0
22
-
23
-
24
- def preprocess_mask(mask):
25
- mask = mask.convert("L")
26
- w, h = mask.size
27
- w, h = map(lambda x: x - x % 32, (w, h)) # resize to integer multiple of 32
28
- mask = mask.resize((w // 8, h // 8), resample=PIL.Image.NEAREST)
29
- mask = np.array(mask).astype(np.float32) / 255.0
30
- mask = np.tile(mask, (4, 1, 1))
31
- mask = mask[None].transpose(0, 1, 2, 3) # what does this step do?
32
- mask = 1 - mask # repaint white, keep black
33
- mask = torch.from_numpy(mask)
34
- return mask
35
-
36
- class StableDiffusionInpaintingPipeline(DiffusionPipeline):
37
- def __init__(
38
- self,
39
- vae: AutoencoderKL,
40
- text_encoder: CLIPTextModel,
41
- tokenizer: CLIPTokenizer,
42
- unet: UNet2DConditionModel,
43
- scheduler: Union[DDIMScheduler, PNDMScheduler],
44
- safety_checker: StableDiffusionSafetyChecker,
45
- feature_extractor: CLIPFeatureExtractor,
46
- ):
47
- super().__init__()
48
- scheduler = scheduler.set_format("pt")
49
- self.register_modules(
50
- vae=vae,
51
- text_encoder=text_encoder,
52
- tokenizer=tokenizer,
53
- unet=unet,
54
- scheduler=scheduler,
55
- safety_checker=safety_checker,
56
- feature_extractor=feature_extractor,
57
- )
58
-
59
- @torch.no_grad()
60
- def __call__(
61
- self,
62
- prompt: Union[str, List[str]],
63
- init_image: torch.FloatTensor,
64
- mask_image: torch.FloatTensor,
65
- strength: float = 0.8,
66
- num_inference_steps: Optional[int] = 50,
67
- guidance_scale: Optional[float] = 7.5,
68
- eta: Optional[float] = 0.0,
69
- generator: Optional[torch.Generator] = None,
70
- output_type: Optional[str] = "pil",
71
- ):
72
-
73
- if isinstance(prompt, str):
74
- batch_size = 1
75
- elif isinstance(prompt, list):
76
- batch_size = len(prompt)
77
- else:
78
- raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
79
-
80
- if strength < 0 or strength > 1:
81
- raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}")
82
-
83
- # set timesteps
84
- accepts_offset = "offset" in set(inspect.signature(self.scheduler.set_timesteps).parameters.keys())
85
- extra_set_kwargs = {}
86
- offset = 0
87
- if accepts_offset:
88
- offset = 1
89
- extra_set_kwargs["offset"] = 1
90
-
91
- self.scheduler.set_timesteps(num_inference_steps, **extra_set_kwargs)
92
-
93
- # preprocess image
94
- init_image = preprocess_image(init_image).to(self.device)
95
-
96
- # encode the init image into latents and scale the latents
97
- init_latent_dist = self.vae.encode(init_image).latent_dist
98
- init_latents = init_latent_dist.sample(generator=generator)
99
- init_latents = 0.18215 * init_latents
100
-
101
- # prepare init_latents noise to latents
102
- init_latents = torch.cat([init_latents] * batch_size)
103
- init_latents_orig = init_latents
104
-
105
- # preprocess mask
106
- mask = preprocess_mask(mask_image).to(self.device)
107
- mask = torch.cat([mask] * batch_size)
108
-
109
- # check sizes
110
- if not mask.shape == init_latents.shape:
111
- raise ValueError(f"The mask and init_image should be the same size!")
112
-
113
- # get the original timestep using init_timestep
114
- init_timestep = int(num_inference_steps * strength) + offset
115
- init_timestep = min(init_timestep, num_inference_steps)
116
- timesteps = self.scheduler.timesteps[-init_timestep]
117
- timesteps = torch.tensor([timesteps] * batch_size, dtype=torch.long, device=self.device)
118
-
119
- # add noise to latents using the timesteps
120
- noise = torch.randn(init_latents.shape, generator=generator, device=self.device)
121
- init_latents = self.scheduler.add_noise(init_latents, noise, timesteps)
122
-
123
- # get prompt text embeddings
124
- text_input = self.tokenizer(
125
- prompt,
126
- padding="max_length",
127
- max_length=self.tokenizer.model_max_length,
128
- truncation=True,
129
- return_tensors="pt",
130
- )
131
- text_embeddings = self.text_encoder(text_input.input_ids.to(self.device))[0]
132
-
133
- # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
134
- # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
135
- # corresponds to doing no classifier free guidance.
136
- do_classifier_free_guidance = guidance_scale > 1.0
137
- # get unconditional embeddings for classifier free guidance
138
- if do_classifier_free_guidance:
139
- max_length = text_input.input_ids.shape[-1]
140
- uncond_input = self.tokenizer(
141
- [""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt"
142
- )
143
- uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(self.device))[0]
144
-
145
- # For classifier free guidance, we need to do two forward passes.
146
- # Here we concatenate the unconditional and text embeddings into a single batch
147
- # to avoid doing two forward passes
148
- text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
149
-
150
- # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
151
- # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
152
- # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
153
- # and should be between [0, 1]
154
- accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
155
- extra_step_kwargs = {}
156
- if accepts_eta:
157
- extra_step_kwargs["eta"] = eta
158
-
159
- latents = init_latents
160
- t_start = max(num_inference_steps - init_timestep + offset, 0)
161
- for i, t in tqdm(enumerate(self.scheduler.timesteps[t_start:])):
162
- # expand the latents if we are doing classifier free guidance
163
- latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
164
-
165
- # predict the noise residual
166
- noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings)["sample"]
167
-
168
- # perform guidance
169
- if do_classifier_free_guidance:
170
- noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
171
- noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
172
-
173
- # compute the previous noisy sample x_t -> x_t-1
174
- latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs)["prev_sample"]
175
-
176
- # masking
177
- init_latents_proper = self.scheduler.add_noise(init_latents_orig, noise, t)
178
- latents = (init_latents_proper * mask) + (latents * (1 - mask))
179
-
180
- # scale and decode the image latents with vae
181
- latents = 1 / 0.18215 * latents
182
- image = self.vae.decode(latents).sample
183
-
184
- image = (image / 2 + 0.5).clamp(0, 1)
185
- image = image.cpu().permute(0, 2, 3, 1).numpy()
186
-
187
- # run safety checker
188
- safety_cheker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pt").to(self.device)
189
- image, has_nsfw_concept = self.safety_checker(images=image, clip_input=safety_cheker_input.pixel_values)
190
-
191
- if output_type == "pil":
192
- image = self.numpy_to_pil(image)
193
-
194
- return {"sample": image, "nsfw_content_detected": has_nsfw_concept}