Commit
•
0963421
1
Parent(s):
4bacf14
Update app.py
Browse files
app.py
CHANGED
@@ -8,7 +8,6 @@ from typing import List
|
|
8 |
from diffusers.utils import numpy_to_pil
|
9 |
from diffusers import StableCascadeDecoderPipeline, StableCascadePriorPipeline
|
10 |
from diffusers.pipelines.wuerstchen import DEFAULT_STAGE_C_TIMESTEPS
|
11 |
-
import spaces
|
12 |
from previewer.modules import Previewer
|
13 |
import user_history
|
14 |
|
@@ -24,14 +23,12 @@ CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES") != "0
|
|
24 |
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "1536"))
|
25 |
USE_TORCH_COMPILE = False
|
26 |
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD") == "1"
|
27 |
-
PREVIEW_IMAGES = True
|
28 |
|
29 |
dtype = torch.bfloat16
|
30 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
31 |
if torch.cuda.is_available():
|
32 |
-
prior_pipeline = StableCascadePriorPipeline.from_pretrained("stabilityai/stable-cascade-prior", torch_dtype=dtype)
|
33 |
-
decoder_pipeline = StableCascadeDecoderPipeline.from_pretrained("stabilityai/stable-cascade", torch_dtype=dtype)
|
34 |
-
|
35 |
if ENABLE_CPU_OFFLOAD:
|
36 |
prior_pipeline.enable_model_cpu_offload()
|
37 |
decoder_pipeline.enable_model_cpu_offload()
|
@@ -43,19 +40,6 @@ if torch.cuda.is_available():
|
|
43 |
prior_pipeline.prior = torch.compile(prior_pipeline.prior, mode="reduce-overhead", fullgraph=True)
|
44 |
decoder_pipeline.decoder = torch.compile(decoder_pipeline.decoder, mode="max-autotune", fullgraph=True)
|
45 |
|
46 |
-
if PREVIEW_IMAGES:
|
47 |
-
previewer = Previewer()
|
48 |
-
previewer_state_dict = torch.load("previewer/previewer_v1_100k.pt", map_location=torch.device('cpu'))["state_dict"]
|
49 |
-
previewer.load_state_dict(previewer_state_dict)
|
50 |
-
def callback_prior(i, t, latents):
|
51 |
-
output = previewer(latents)
|
52 |
-
output = numpy_to_pil(output.clamp(0, 1).permute(0, 2, 3, 1).float().cpu().numpy())
|
53 |
-
return output
|
54 |
-
callback_steps = 1
|
55 |
-
else:
|
56 |
-
previewer = None
|
57 |
-
callback_prior = None
|
58 |
-
callback_steps = None
|
59 |
else:
|
60 |
prior_pipeline = None
|
61 |
decoder_pipeline = None
|
@@ -66,7 +50,6 @@ def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
|
66 |
seed = random.randint(0, MAX_SEED)
|
67 |
return seed
|
68 |
|
69 |
-
@spaces.GPU
|
70 |
def generate(
|
71 |
prompt: str,
|
72 |
negative_prompt: str = "",
|
@@ -82,12 +65,8 @@ def generate(
|
|
82 |
num_images_per_prompt: int = 2,
|
83 |
profile: gr.OAuthProfile | None = None,
|
84 |
) -> PIL.Image.Image:
|
85 |
-
previewer.eval().requires_grad_(False).to(device).to(dtype)
|
86 |
-
prior_pipeline.to(device)
|
87 |
-
decoder_pipeline.to(device)
|
88 |
|
89 |
generator = torch.Generator().manual_seed(seed)
|
90 |
-
print("prior_num_inference_steps: ", prior_num_inference_steps)
|
91 |
prior_output = prior_pipeline(
|
92 |
prompt=prompt,
|
93 |
height=height,
|
@@ -98,17 +77,8 @@ def generate(
|
|
98 |
guidance_scale=prior_guidance_scale,
|
99 |
num_images_per_prompt=num_images_per_prompt,
|
100 |
generator=generator,
|
101 |
-
callback=callback_prior,
|
102 |
-
callback_steps=callback_steps
|
103 |
)
|
104 |
|
105 |
-
if PREVIEW_IMAGES:
|
106 |
-
for _ in range(len(DEFAULT_STAGE_C_TIMESTEPS)):
|
107 |
-
r = next(prior_output)
|
108 |
-
if isinstance(r, list):
|
109 |
-
yield r[0]
|
110 |
-
prior_output = r
|
111 |
-
|
112 |
decoder_output = decoder_pipeline(
|
113 |
image_embeddings=prior_output.image_embeddings,
|
114 |
prompt=prompt,
|
@@ -120,25 +90,7 @@ def generate(
|
|
120 |
output_type="pil",
|
121 |
).images
|
122 |
|
123 |
-
|
124 |
-
for image in decoder_output:
|
125 |
-
user_history.save_image(
|
126 |
-
profile=profile,
|
127 |
-
image=image,
|
128 |
-
label=prompt,
|
129 |
-
metadata={
|
130 |
-
"negative_prompt": negative_prompt,
|
131 |
-
"seed": seed,
|
132 |
-
"width": width,
|
133 |
-
"height": height,
|
134 |
-
"prior_guidance_scale": prior_guidance_scale,
|
135 |
-
"decoder_num_inference_steps": decoder_num_inference_steps,
|
136 |
-
"decoder_guidance_scale": decoder_guidance_scale,
|
137 |
-
"num_images_per_prompt": num_images_per_prompt,
|
138 |
-
},
|
139 |
-
)
|
140 |
-
|
141 |
-
yield decoder_output[0]
|
142 |
|
143 |
|
144 |
examples = [
|
@@ -270,11 +222,8 @@ with gr.Blocks() as demo:
|
|
270 |
api_name="run",
|
271 |
)
|
272 |
|
273 |
-
with gr.Blocks(css="style.css") as
|
274 |
-
|
275 |
-
|
276 |
-
with gr.Tab("Past generations"):
|
277 |
-
user_history.render()
|
278 |
-
|
279 |
if __name__ == "__main__":
|
280 |
-
|
|
|
8 |
from diffusers.utils import numpy_to_pil
|
9 |
from diffusers import StableCascadeDecoderPipeline, StableCascadePriorPipeline
|
10 |
from diffusers.pipelines.wuerstchen import DEFAULT_STAGE_C_TIMESTEPS
|
|
|
11 |
from previewer.modules import Previewer
|
12 |
import user_history
|
13 |
|
|
|
23 |
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "1536"))
|
24 |
USE_TORCH_COMPILE = False
|
25 |
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD") == "1"
|
|
|
26 |
|
27 |
dtype = torch.bfloat16
|
28 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
29 |
if torch.cuda.is_available():
|
30 |
+
prior_pipeline = StableCascadePriorPipeline.from_pretrained("stabilityai/stable-cascade-prior", torch_dtype=dtype).to(device)
|
31 |
+
decoder_pipeline = StableCascadeDecoderPipeline.from_pretrained("stabilityai/stable-cascade", torch_dtype=dtype).to(device)
|
|
|
32 |
if ENABLE_CPU_OFFLOAD:
|
33 |
prior_pipeline.enable_model_cpu_offload()
|
34 |
decoder_pipeline.enable_model_cpu_offload()
|
|
|
40 |
prior_pipeline.prior = torch.compile(prior_pipeline.prior, mode="reduce-overhead", fullgraph=True)
|
41 |
decoder_pipeline.decoder = torch.compile(decoder_pipeline.decoder, mode="max-autotune", fullgraph=True)
|
42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
else:
|
44 |
prior_pipeline = None
|
45 |
decoder_pipeline = None
|
|
|
50 |
seed = random.randint(0, MAX_SEED)
|
51 |
return seed
|
52 |
|
|
|
53 |
def generate(
|
54 |
prompt: str,
|
55 |
negative_prompt: str = "",
|
|
|
65 |
num_images_per_prompt: int = 2,
|
66 |
profile: gr.OAuthProfile | None = None,
|
67 |
) -> PIL.Image.Image:
|
|
|
|
|
|
|
68 |
|
69 |
generator = torch.Generator().manual_seed(seed)
|
|
|
70 |
prior_output = prior_pipeline(
|
71 |
prompt=prompt,
|
72 |
height=height,
|
|
|
77 |
guidance_scale=prior_guidance_scale,
|
78 |
num_images_per_prompt=num_images_per_prompt,
|
79 |
generator=generator,
|
|
|
|
|
80 |
)
|
81 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
decoder_output = decoder_pipeline(
|
83 |
image_embeddings=prior_output.image_embeddings,
|
84 |
prompt=prompt,
|
|
|
90 |
output_type="pil",
|
91 |
).images
|
92 |
|
93 |
+
return decoder_output[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
|
95 |
|
96 |
examples = [
|
|
|
222 |
api_name="run",
|
223 |
)
|
224 |
|
225 |
+
with gr.Blocks(css="style.css") as local_demo:
|
226 |
+
demo.render()
|
227 |
+
|
|
|
|
|
|
|
228 |
if __name__ == "__main__":
|
229 |
+
local_demo.queue(max_size=20).launch()
|