|
import os |
|
import random |
|
import gradio as gr |
|
import numpy as np |
|
import PIL.Image |
|
import torch |
|
from typing import List |
|
from diffusers.utils import numpy_to_pil |
|
from diffusers import StableCascadeDecoderPipeline, StableCascadePriorPipeline |
|
from diffusers.pipelines.wuerstchen import DEFAULT_STAGE_C_TIMESTEPS |
|
import spaces |
|
from previewer.modules import Previewer |
|
|
|
|
|
os.environ['TOKENIZERS_PARALLELISM'] = 'false' |
|
|
|
DESCRIPTION = "# Stable Cascade" |
|
DESCRIPTION += "\n<p style=\"text-align: center\">Unofficial demo for <a href='https://huggingface.co/stabilityai/stable-cascade' target='_blank'>Stable Casacade</a>, a new high resolution text-to-image model by Stability AI, built on the Würstchen architecture</p>" |
|
if not torch.cuda.is_available(): |
|
DESCRIPTION += "\n<p>Running on CPU 🥶</p>" |
|
|
|
MAX_SEED = np.iinfo(np.int32).max |
|
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES") == "1" |
|
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "1536")) |
|
USE_TORCH_COMPILE = False |
|
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD") == "1" |
|
PREVIEW_IMAGES = True |
|
|
|
dtype = torch.bfloat16 |
|
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") |
|
if torch.cuda.is_available(): |
|
prior_pipeline = StableCascadePriorPipeline.from_pretrained("diffusers/StableCascade-prior", torch_dtype=dtype).to(device) |
|
decoder_pipeline = StableCascadeDecoderPipeline.from_pretrained("diffusers/StableCascade-decoder", torch_dtype=dtype).to(device) |
|
|
|
if ENABLE_CPU_OFFLOAD: |
|
prior_pipeline.enable_model_cpu_offload() |
|
decoder_pipeline.enable_model_cpu_offload() |
|
else: |
|
prior_pipeline.to(device) |
|
decoder_pipeline.to(device) |
|
|
|
if USE_TORCH_COMPILE: |
|
prior_pipeline.prior = torch.compile(prior_pipeline.prior, mode="reduce-overhead", fullgraph=True) |
|
decoder_pipeline.decoder = torch.compile(decoder_pipeline.decoder, mode="max-autotune", fullgraph=True) |
|
|
|
if PREVIEW_IMAGES: |
|
previewer = Previewer() |
|
previewer.load_state_dict(torch.load("previewer/previewer_v1_100k.pt")["state_dict"]) |
|
previewer.eval().requires_grad_(False).to(device).to(dtype) |
|
def callback_prior(i, t, latents): |
|
output = previewer(latents) |
|
output = numpy_to_pil(output.clamp(0, 1).permute(0, 2, 3, 1).float().cpu().numpy()) |
|
return output |
|
callback_steps = 1 |
|
else: |
|
previewer = None |
|
callback_prior = None |
|
callback_steps = None |
|
else: |
|
prior_pipeline = None |
|
decoder_pipeline = None |
|
|
|
|
|
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: |
|
if randomize_seed: |
|
seed = random.randint(0, MAX_SEED) |
|
return seed |
|
|
|
@spaces.GPU |
|
def generate( |
|
prompt: str, |
|
negative_prompt: str = "", |
|
seed: int = 0, |
|
width: int = 1024, |
|
height: int = 1024, |
|
prior_num_inference_steps: int = 30, |
|
|
|
prior_guidance_scale: float = 4.0, |
|
decoder_num_inference_steps: int = 12, |
|
|
|
decoder_guidance_scale: float = 0.0, |
|
num_images_per_prompt: int = 2, |
|
|
|
) -> PIL.Image.Image: |
|
|
|
|
|
|
|
generator = torch.Generator().manual_seed(seed) |
|
prior_output = prior_pipeline( |
|
prompt=prompt, |
|
height=height, |
|
width=width, |
|
num_inference_steps=prior_num_inference_steps, |
|
timesteps=DEFAULT_STAGE_C_TIMESTEPS, |
|
negative_prompt=negative_prompt, |
|
guidance_scale=prior_guidance_scale, |
|
num_images_per_prompt=num_images_per_prompt, |
|
generator=generator, |
|
callback=callback_prior, |
|
callback_steps=callback_steps |
|
) |
|
|
|
if PREVIEW_IMAGES: |
|
for _ in range(len(DEFAULT_STAGE_C_TIMESTEPS)): |
|
r = next(prior_output) |
|
if isinstance(r, list): |
|
yield r[0] |
|
prior_output = r |
|
|
|
decoder_output = decoder_pipeline( |
|
image_embeddings=prior_output.image_embeddings, |
|
prompt=prompt, |
|
num_inference_steps=decoder_num_inference_steps, |
|
|
|
guidance_scale=decoder_guidance_scale, |
|
negative_prompt=negative_prompt, |
|
generator=generator, |
|
output_type="pil", |
|
).images |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
yield decoder_output[0] |
|
|
|
|
|
examples = [ |
|
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", |
|
"An astronaut riding a green horse", |
|
] |
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown(DESCRIPTION) |
|
gr.DuplicateButton( |
|
value="Duplicate Space for private use", |
|
elem_id="duplicate-button", |
|
visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1", |
|
) |
|
with gr.Group(): |
|
with gr.Row(): |
|
prompt = gr.Text( |
|
label="Prompt", |
|
show_label=False, |
|
max_lines=1, |
|
placeholder="Enter your prompt", |
|
container=False, |
|
) |
|
run_button = gr.Button("Run", scale=0) |
|
result = gr.Image(label="Result", show_label=False) |
|
with gr.Accordion("Advanced options", open=False): |
|
negative_prompt = gr.Text( |
|
label="Negative prompt", |
|
max_lines=1, |
|
placeholder="Enter a Negative Prompt", |
|
) |
|
|
|
seed = gr.Slider( |
|
label="Seed", |
|
minimum=0, |
|
maximum=MAX_SEED, |
|
step=1, |
|
value=0, |
|
) |
|
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) |
|
with gr.Row(): |
|
width = gr.Slider( |
|
label="Width", |
|
minimum=1024, |
|
maximum=MAX_IMAGE_SIZE, |
|
step=512, |
|
value=1024, |
|
) |
|
height = gr.Slider( |
|
label="Height", |
|
minimum=1024, |
|
maximum=MAX_IMAGE_SIZE, |
|
step=512, |
|
value=1024, |
|
) |
|
num_images_per_prompt = gr.Slider( |
|
label="Number of Images", |
|
minimum=1, |
|
maximum=2, |
|
step=1, |
|
value=1, |
|
) |
|
with gr.Row(): |
|
prior_guidance_scale = gr.Slider( |
|
label="Prior Guidance Scale", |
|
minimum=0, |
|
maximum=20, |
|
step=0.1, |
|
value=4.0, |
|
) |
|
prior_num_inference_steps = gr.Slider( |
|
label="Prior Inference Steps", |
|
minimum=10, |
|
maximum=30, |
|
step=1, |
|
value=20, |
|
) |
|
|
|
decoder_guidance_scale = gr.Slider( |
|
label="Decoder Guidance Scale", |
|
minimum=0, |
|
maximum=0, |
|
step=0.1, |
|
value=0.0, |
|
) |
|
decoder_num_inference_steps = gr.Slider( |
|
label="Decoder Inference Steps", |
|
minimum=4, |
|
maximum=12, |
|
step=1, |
|
value=10, |
|
) |
|
|
|
gr.Examples( |
|
examples=examples, |
|
inputs=prompt, |
|
outputs=result, |
|
fn=generate, |
|
cache_examples=CACHE_EXAMPLES, |
|
) |
|
|
|
inputs = [ |
|
prompt, |
|
negative_prompt, |
|
seed, |
|
width, |
|
height, |
|
prior_num_inference_steps, |
|
|
|
prior_guidance_scale, |
|
decoder_num_inference_steps, |
|
|
|
decoder_guidance_scale, |
|
num_images_per_prompt, |
|
] |
|
gr.on( |
|
triggers=[prompt.submit, negative_prompt.submit, run_button.click], |
|
fn=randomize_seed_fn, |
|
inputs=[seed, randomize_seed], |
|
outputs=seed, |
|
queue=False, |
|
api_name=False, |
|
).then( |
|
fn=generate, |
|
inputs=inputs, |
|
outputs=result, |
|
api_name="run", |
|
) |
|
|
|
with gr.Blocks(css="style.css") as demo_with_history: |
|
|
|
demo.render() |
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
demo_with_history.queue(max_size=20).launch() |