Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -47,31 +47,28 @@ pipe = StableDiffusionXLFillPipeline.from_pretrained(
|
|
47 |
|
48 |
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)
|
49 |
|
50 |
-
def resize_and_pad(image, target_size):
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
new_height = int(new_width / aspect_ratio)
|
58 |
-
else:
|
59 |
-
# Image is taller than the target ratio
|
60 |
-
new_height = target_size[1]
|
61 |
-
new_width = int(new_height * aspect_ratio)
|
62 |
-
|
63 |
-
resized_image = image.resize((new_width, new_height), Image.LANCZOS)
|
64 |
|
|
|
65 |
new_image = Image.new('RGB', target_size, (255, 255, 255))
|
66 |
|
67 |
-
|
|
|
68 |
paste_y = (target_size[1] - new_height) // 2
|
69 |
|
|
|
70 |
new_image.paste(resized_image, (paste_x, paste_y))
|
71 |
|
|
|
72 |
mask = Image.new('L', target_size, 255)
|
73 |
mask_draw = ImageDraw.Draw(mask)
|
74 |
-
mask_draw.rectangle([paste_x, paste_y, paste_x +
|
75 |
|
76 |
return new_image, mask
|
77 |
|
@@ -80,7 +77,7 @@ def infer(image, model_selection, width, height, overlap_width, num_inference_st
|
|
80 |
target_size = (width, height)
|
81 |
|
82 |
if expand_mode:
|
83 |
-
background, mask = resize_and_pad(image, target_size)
|
84 |
cnet_image = background.copy()
|
85 |
cnet_image.paste(0, (0, 0), mask)
|
86 |
else:
|
|
|
47 |
|
48 |
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)
|
49 |
|
50 |
+
def resize_and_pad(image, target_size, resize_width=512):
|
51 |
+
# Calculate the new height to maintain aspect ratio
|
52 |
+
aspect_ratio = image.height / image.width
|
53 |
+
new_height = int(resize_width * aspect_ratio)
|
54 |
+
|
55 |
+
# Resize the image
|
56 |
+
resized_image = image.resize((resize_width, new_height), Image.LANCZOS)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
+
# Create a new white image with the target size
|
59 |
new_image = Image.new('RGB', target_size, (255, 255, 255))
|
60 |
|
61 |
+
# Calculate position to paste the resized image (center it)
|
62 |
+
paste_x = (target_size[0] - resize_width) // 2
|
63 |
paste_y = (target_size[1] - new_height) // 2
|
64 |
|
65 |
+
# Paste the resized image onto the new image
|
66 |
new_image.paste(resized_image, (paste_x, paste_y))
|
67 |
|
68 |
+
# Create a mask
|
69 |
mask = Image.new('L', target_size, 255)
|
70 |
mask_draw = ImageDraw.Draw(mask)
|
71 |
+
mask_draw.rectangle([paste_x, paste_y, paste_x + resize_width, paste_y + new_height], fill=0)
|
72 |
|
73 |
return new_image, mask
|
74 |
|
|
|
77 |
target_size = (width, height)
|
78 |
|
79 |
if expand_mode:
|
80 |
+
background, mask = resize_and_pad(image, target_size, resize_width=512)
|
81 |
cnet_image = background.copy()
|
82 |
cnet_image.paste(0, (0, 0), mask)
|
83 |
else:
|