Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -5,7 +5,11 @@ from huggingface_hub import hf_hub_download
|
|
5 |
from safetensors.torch import load_file
|
6 |
|
7 |
### SDXL Turbo ####
|
8 |
-
pipe_turbo = StableDiffusionXLPipeline.from_pretrained("stabilityai/sdxl-turbo",
|
|
|
|
|
|
|
|
|
9 |
pipe_turbo.to("cuda")
|
10 |
|
11 |
### SDXL Lightning ###
|
@@ -13,9 +17,19 @@ base = "stabilityai/stable-diffusion-xl-base-1.0"
|
|
13 |
repo = "ByteDance/SDXL-Lightning"
|
14 |
ckpt = "sdxl_lightning_1step_unet_x0.safetensors"
|
15 |
|
16 |
-
unet = UNet2DConditionModel.from_config(base, subfolder="unet").to(
|
17 |
-
unet.load_state_dict(load_file(hf_hub_download(repo, ckpt)
|
18 |
-
pipe_lightning = StableDiffusionXLPipeline.from_pretrained(base,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
pipe_lightning.scheduler = EulerDiscreteScheduler.from_config(pipe_lightning.scheduler.config, timestep_spacing="trailing", prediction_type="sample")
|
20 |
pipe_lightning.to("cuda")
|
21 |
|
@@ -23,11 +37,21 @@ pipe_lightning.to("cuda")
|
|
23 |
repo_name = "ByteDance/Hyper-SD"
|
24 |
ckpt_name = "Hyper-SDXL-1step-Unet.safetensors"
|
25 |
|
26 |
-
unet = UNet2DConditionModel.from_config(base, subfolder="unet").to(
|
27 |
-
unet.load_state_dict(load_file(hf_hub_download(repo_name, ckpt_name)
|
28 |
-
pipe_hyper = StableDiffusionXLPipeline.from_pretrained(base,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
pipe_hyper.scheduler = LCMScheduler.from_config(pipe_hyper.scheduler.config)
|
30 |
pipe_hyper.to("cuda")
|
|
|
31 |
|
32 |
def run_comparison(prompt):
|
33 |
image_turbo=pipe_turbo(prompt=prompt, num_inference_steps=1, guidance_scale=0).images[0]
|
|
|
5 |
from safetensors.torch import load_file
|
6 |
|
7 |
### SDXL Turbo ####
|
8 |
+
pipe_turbo = StableDiffusionXLPipeline.from_pretrained("stabilityai/sdxl-turbo",
|
9 |
+
vae=vae,
|
10 |
+
torch_dtype=torch.float16,
|
11 |
+
variant="fp16"
|
12 |
+
)
|
13 |
pipe_turbo.to("cuda")
|
14 |
|
15 |
### SDXL Lightning ###
|
|
|
17 |
repo = "ByteDance/SDXL-Lightning"
|
18 |
ckpt = "sdxl_lightning_1step_unet_x0.safetensors"
|
19 |
|
20 |
+
unet = UNet2DConditionModel.from_config(base, subfolder="unet").to(torch.float16)
|
21 |
+
unet.load_state_dict(load_file(hf_hub_download(repo, ckpt)))
|
22 |
+
pipe_lightning = StableDiffusionXLPipeline.from_pretrained(base,
|
23 |
+
unet=unet,
|
24 |
+
vae=vae,
|
25 |
+
text_encoder=pipe_turbo.text_encoder,
|
26 |
+
text_encoder_2=pipe_turbo.text_encoder_2,
|
27 |
+
tokenizer=pipe_turbo.tokenizer,
|
28 |
+
tokenizer_2=pipe_turbo.tokenizer_2,
|
29 |
+
torch_dtype=torch.float16,
|
30 |
+
variant="fp16"
|
31 |
+
)#.to("cuda")
|
32 |
+
del unet
|
33 |
pipe_lightning.scheduler = EulerDiscreteScheduler.from_config(pipe_lightning.scheduler.config, timestep_spacing="trailing", prediction_type="sample")
|
34 |
pipe_lightning.to("cuda")
|
35 |
|
|
|
37 |
repo_name = "ByteDance/Hyper-SD"
|
38 |
ckpt_name = "Hyper-SDXL-1step-Unet.safetensors"
|
39 |
|
40 |
+
unet = UNet2DConditionModel.from_config(base, subfolder="unet").to(torch.float16)
|
41 |
+
unet.load_state_dict(load_file(hf_hub_download(repo_name, ckpt_name)))
|
42 |
+
pipe_hyper = StableDiffusionXLPipeline.from_pretrained(base,
|
43 |
+
unet=unet,
|
44 |
+
vae=vae,
|
45 |
+
text_encoder=pipe_turbo.text_encoder,
|
46 |
+
text_encoder_2=pipe_turbo.text_encoder_2,
|
47 |
+
tokenizer=pipe_turbo.tokenizer,
|
48 |
+
tokenizer_2=pipe_turbo.tokenizer_2,
|
49 |
+
torch_dtype=torch.float16,
|
50 |
+
variant="fp16"
|
51 |
+
)#.to("cuda")
|
52 |
pipe_hyper.scheduler = LCMScheduler.from_config(pipe_hyper.scheduler.config)
|
53 |
pipe_hyper.to("cuda")
|
54 |
+
del unet
|
55 |
|
56 |
def run_comparison(prompt):
|
57 |
image_turbo=pipe_turbo(prompt=prompt, num_inference_steps=1, guidance_scale=0).images[0]
|