latentdiffusion / app.py
5dimension's picture
Update app.py
b787e2d
raw
history blame
10.6 kB
from pydoc import describe
import gradio as gr
import torch
from omegaconf import OmegaConf
import sys
sys.path.append(".")
sys.path.append('./taming-transformers')
sys.path.append('./latent-diffusion')
from taming.models import vqgan
from ldm.util import instantiate_from_config
from huggingface_hub import hf_hub_download
model_path_e = hf_hub_download(repo_id="multimodalart/compvis-latent-diffusion-text2img-large", filename="txt2img-f8-large.ckpt")
#@title Import stuff
import argparse, os, sys, glob
import numpy as np
from PIL import Image
from einops import rearrange
from torchvision.utils import make_grid
import transformers
import gc
from ldm.util import instantiate_from_config
from ldm.models.diffusion.ddim import DDIMSampler
from ldm.models.diffusion.plms import PLMSSampler
from open_clip import tokenizer
import open_clip
def load_model_from_config(config, ckpt, verbose=False):
print(f"Loading model from {ckpt}")
pl_sd = torch.load(ckpt, map_location="cuda")
sd = pl_sd["state_dict"]
model = instantiate_from_config(config.model)
m, u = model.load_state_dict(sd, strict=False)
if len(m) > 0 and verbose:
print("missing keys:")
print(m)
if len(u) > 0 and verbose:
print("unexpected keys:")
print(u)
model = model.half().cuda()
model.eval()
return model
def load_safety_model(clip_model):
"""load the safety model"""
import autokeras as ak # pylint: disable=import-outside-toplevel
from tensorflow.keras.models import load_model # pylint: disable=import-outside-toplevel
from os.path import expanduser # pylint: disable=import-outside-toplevel
home = expanduser("~")
cache_folder = home + "/.cache/clip_retrieval/" + clip_model.replace("/", "_")
if clip_model == "ViT-L/14":
model_dir = cache_folder + "/clip_autokeras_binary_nsfw"
dim = 768
elif clip_model == "ViT-B/32":
model_dir = cache_folder + "/clip_autokeras_nsfw_b32"
dim = 512
else:
raise ValueError("Unknown clip model")
if not os.path.exists(model_dir):
os.makedirs(cache_folder, exist_ok=True)
from urllib.request import urlretrieve # pylint: disable=import-outside-toplevel
path_to_zip_file = cache_folder + "/clip_autokeras_binary_nsfw.zip"
if clip_model == "ViT-L/14":
url_model = "https://raw.githubusercontent.com/LAION-AI/CLIP-based-NSFW-Detector/main/clip_autokeras_binary_nsfw.zip"
elif clip_model == "ViT-B/32":
url_model = (
"https://raw.githubusercontent.com/LAION-AI/CLIP-based-NSFW-Detector/main/clip_autokeras_nsfw_b32.zip"
)
else:
raise ValueError("Unknown model {}".format(clip_model))
urlretrieve(url_model, path_to_zip_file)
import zipfile # pylint: disable=import-outside-toplevel
with zipfile.ZipFile(path_to_zip_file, "r") as zip_ref:
zip_ref.extractall(cache_folder)
loaded_model = load_model(model_dir, custom_objects=ak.CUSTOM_OBJECTS)
loaded_model.predict(np.random.rand(10 ** 3, dim).astype("float32"), batch_size=10 ** 3)
return loaded_model
def is_unsafe(safety_model, embeddings, threshold=0.5):
"""find unsafe embeddings"""
nsfw_values = safety_model.predict(embeddings, batch_size=embeddings.shape[0])
x = np.array([e[0] for e in nsfw_values])
return True if x > threshold else False
config = OmegaConf.load("latent-diffusion/configs/latent-diffusion/txt2img-1p4B-eval.yaml")
model = load_model_from_config(config,model_path_e)
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
model = model.to(device)
#NSFW CLIP Filter
safety_model = load_safety_model("ViT-B/32")
clip_model, _, preprocess = open_clip.create_model_and_transforms('ViT-B-32', pretrained='openai')
def run(prompt, steps, width, height, images, scale):
opt = argparse.Namespace(
prompt = prompt,
outdir='latent-diffusion/outputs',
ddim_steps = int(steps),
ddim_eta = 0,
n_iter = 1,
W=int(width),
H=int(height),
n_samples=int(images),
scale=scale,
plms=True
)
if opt.plms:
opt.ddim_eta = 0
sampler = PLMSSampler(model)
else:
sampler = DDIMSampler(model)
os.makedirs(opt.outdir, exist_ok=True)
outpath = opt.outdir
prompt = opt.prompt
sample_path = os.path.join(outpath, "samples")
os.makedirs(sample_path, exist_ok=True)
base_count = len(os.listdir(sample_path))
all_samples=list()
all_samples_images=list()
with torch.no_grad():
with torch.cuda.amp.autocast():
with model.ema_scope():
uc = None
if opt.scale > 0:
uc = model.get_learned_conditioning(opt.n_samples * [""])
for n in range(opt.n_iter):
c = model.get_learned_conditioning(opt.n_samples * [prompt])
shape = [4, opt.H//8, opt.W//8]
samples_ddim, _ = sampler.sample(S=opt.ddim_steps,
conditioning=c,
batch_size=opt.n_samples,
shape=shape,
verbose=False,
unconditional_guidance_scale=opt.scale,
unconditional_conditioning=uc,
eta=opt.ddim_eta)
x_samples_ddim = model.decode_first_stage(samples_ddim)
x_samples_ddim = torch.clamp((x_samples_ddim+1.0)/2.0, min=0.0, max=1.0)
for x_sample in x_samples_ddim:
x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c')
image_vector = Image.fromarray(x_sample.astype(np.uint8))
image_preprocess = preprocess(image_vector).unsqueeze(0)
with torch.no_grad():
image_features = clip_model.encode_image(image_preprocess)
image_features /= image_features.norm(dim=-1, keepdim=True)
query = image_features.cpu().detach().numpy().astype("float32")
unsafe = is_unsafe(safety_model,query,0.5)
all_samples_images.append(image_vector)
#Image.fromarray(x_sample.astype(np.uint8)).save(os.path.join(sample_path, f"{base_count:04}.png"))
base_count += 1
all_samples.append(x_samples_ddim)
# additionally, save as grid
grid = torch.stack(all_samples, 0)
grid = rearrange(grid, 'n b c h w -> (n b) c h w')
grid = make_grid(grid, nrow=2)
# to image
grid = 255. * rearrange(grid, 'c h w -> h w c').cpu().numpy()
Image.fromarray(grid.astype(np.uint8)).save(os.path.join(outpath, f'{prompt.replace(" ", "-")}.png'))
return(Image.fromarray(grid.astype(np.uint8)),all_samples_images,None)
image = gr.outputs.Image(type="pil", label="Your result")
css = ".output-image{height: 528px !important} .output-carousel .output-image{height:272px !important} a{text-decoration: underline}"
iface = gr.Interface(fn=run, inputs=[
gr.inputs.Textbox(label="Prompt - try adding increments to your prompt such as 'oil on canvas', 'a painting', 'a book cover'",default="chalk pastel drawing of a dog wearing a funny hat"),
gr.inputs.Slider(label="Steps - more steps can increase quality but will take longer to generate",default=45,maximum=50,minimum=1,step=1),
gr.inputs.Radio(label="Width", choices=[32,64,128,256],default=256),
gr.inputs.Radio(label="Height", choices=[32,64,128,256],default=256),
gr.inputs.Slider(label="Images - How many images you wish to generate", default=2, step=1, minimum=1, maximum=4),
gr.inputs.Slider(label="Diversity scale - How different from one another you wish the images to be",default=5.0, minimum=1.0, maximum=15.0),
#gr.inputs.Slider(label="ETA - between 0 and 1. Lower values can provide better quality, higher values can be more diverse",default=0.0,minimum=0.0, maximum=1.0,step=0.1),
],
outputs=[image,gr.outputs.Carousel(label="Individual images",components=["image"]),gr.outputs.Textbox(label="Error")],
css=css,
title="Generate images from text with Latent Diffusion LAION-400M",
description="<div>By typing a prompt and pressing submit you can generate images based on this prompt. <a href='https://github.com/CompVis/latent-diffusion' target='_blank'>Latent Diffusion</a> is a text-to-image model created by <a href='https://github.com/CompVis' target='_blank'>CompVis</a>, trained on the <a href='https://laion.ai/laion-400-open-dataset/'>LAION-400M dataset.</a><br>This UI to the model was assembled by <a style='color: rgb(245, 158, 11);font-weight:bold' href='https://twitter.com/multimodalart' target='_blank'>@multimodalart</a></div>",
article="<h4 style='font-size: 110%;margin-top:.5em'>Biases acknowledgment</h4><div>Despite how impressive being able to turn text into image is, beware to the fact that this model may output content that reinforces or exarcbates societal biases. According to the <a href='https://arxiv.org/abs/2112.10752' target='_blank'>Latent Diffusion paper</a>:<i> \"Deep learning modules tend to reproduce or exacerbate biases that are already present in the data\"</i>. The model was trained on an unfiltered version the LAION-400M dataset, which scrapped non-curated image-text-pairs from the internet (the exception being the the removal of illegal content) and is meant to be used for research purposes, such as this one. <a href='https://laion.ai/laion-400-open-dataset/' target='_blank'>You can read more on LAION's website</a></div><h4 style='font-size: 110%;margin-top:1em'>Who owns the images produced by this demo?</h4><div>Definetly not me! Probably you do. I say probably because the Copyright discussion about AI generated art is ongoing. So <a href='https://www.theverge.com/2022/2/21/22944335/us-copyright-office-reject-ai-generated-art-recent-entrance-to-paradise' target='_blank'>it may be the case that everything produced here falls automatically into the public domain</a>. But in any case it is either yours or is in the public domain.</div>")
iface.launch(enable_queue=True)